68 research outputs found

    Applications of M.G. Krein's Theory of Regular Symmetric Operators to Sampling Theory

    Full text link
    The classical Kramer sampling theorem establishes general conditions that allow the reconstruction of functions by mean of orthogonal sampling formulae. One major task in sampling theory is to find concrete, non trivial realizations of this theorem. In this paper we provide a new approach to this subject on the basis of the M. G. Krein's theory of representation of simple regular symmetric operators having deficiency indices (1,1). We show that the resulting sampling formulae have the form of Lagrange interpolation series. We also characterize the space of functions reconstructible by our sampling formulae. Our construction allows a rigorous treatment of certain ideas proposed recently in quantum gravity.Comment: 15 pages; v2: minor changes in abstract, addition of PACS numbers, changes in some keywords, some few changes in the introduction, correction of the proof of the last theorem, and addition of some comments at the end of the fourth sectio

    Π‘Ρ…Π΅ΠΌΠ° элСмСнта ΠŸΠ΅Π»ΡŒΡ‚ΡŒΠ΅ Π½Π° ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ… с ΠΏΡ€Ρ‹ΠΆΠΊΠΎΠ²Ρ‹ΠΌ пСрСносом элСктронов ΠΏΠΎ Π΄Π΅Ρ„Π΅ΠΊΡ‚Π°ΠΌ

    Get PDF
    The study of thermoelectric properties of crystalline semiconductors with structural defects is of practical interest in the development of radiation-resistant Peltier elements. In this case, the spectrum of energy levels of hydrogen-like impurities and intrinsic point defects in the band gap (energy gap) of crystal plays an important role.The purpose of this work is to analyze the features of the single-electron band model of semiconductors with hopping electron migration both via atoms of hydrogen-like impurities and via their own point triplecharged intrinsic defects in the c- and v-bands, as well as to search for the possibility of their use in the Peltier element in the temperature range, when the transitions of electrons and holes from impurity atoms and/or intrinsic defects to the c- and v-bands can be neglected.For Peltier elements with electron hopping migration we propose: (i) an h-diode containing |d1)and |d2)-regions with hydrogen-like donors of two types in the charge states (0) and (+1) and compensating them hydrogen-like acceptors in the charge state (βˆ’1); (ii) a homogeneous semiconductor containing intrinsic t-defects in the charge states (βˆ’1, 0, +1), as well as ions of donors and acceptors to control the distribution of t-defects over the charge states. The band diagrams of the proposed Peltier elements in equilibrium and upon excitation of a stationary hopping electric current are analyzed.A model of the h-diode containing hydrogen-like donors of two types |d1) and |d2) with hopping migration of electrons between them for 50 % compensation by acceptors is considered. It is shown that in the case of the reverse (forward) electrical bias of the diode, the cooling (heating) of the region of the electric double layer between |d1)and |d2)-regions is possible.A Peltier element based on a semiconductor with point t-defects is considered. It is assumed that the temperature and the concentration of ions of hydrogen-like acceptors and donors are to assure all t-defects to be in the charge state (0). It is shown that in such an element it is possible to cool down the metal-semiconductor contact under a negative electric potential and to heat up the opposite contact under a positive potential.ИсслСдованиС тСрмоэлСктричСских свойств кристалличСских ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² с Π΄Π΅Ρ„Π΅ΠΊΡ‚Π°ΠΌΠΈ структуры прСдставляСт практичСский интСрСс ΠΏΡ€ΠΈ создании Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎ-стойких элСмСнтов ΠŸΠ΅Π»ΡŒΡ‚ΡŒΠ΅. ΠŸΡ€ΠΈ этом Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ ΠΈΠ³Ρ€Π°Π΅Ρ‚ спСктр ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ энСргии Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… примСсСй ΠΈ собствСнных Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² Π² энСргСтичСской Ρ‰Π΅Π»ΠΈ (Π·Π°ΠΏΡ€Π΅Ρ‰Ρ‘Π½Π½ΠΎΠΉ Π·ΠΎΠ½Π΅) кристалла.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π°Π½Π°Π»ΠΈΠ· особСнностСй одноэлСктронной Π·ΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² с ΠΏΡ€Ρ‹ΠΆΠΊΠΎΠ²ΠΎΠΉ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠ΅ΠΉ элСктронов ΠΊΠ°ΠΊ ΠΏΠΎ Π°Ρ‚ΠΎΠΌΠ°ΠΌ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… примСсСй, Ρ‚Π°ΠΊ ΠΈ ΠΏΠΎ собствСнным Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹ΠΌ трёхзарядным Π΄Π΅Ρ„Π΅ΠΊΡ‚Π°ΠΌ, Π° Ρ‚Π°ΠΊΠΆΠ΅ поиск возмоТности ΠΈΡ… использования Π² элСмСнтС ΠŸΠ΅Π»ΡŒΡ‚ΡŒΠ΅ Π² области Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€, ΠΊΠΎΠ³Π΄Π° ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π°ΠΌΠΈ элСктронов ΠΈ Π΄Ρ‹Ρ€ΠΎΠΊ с Π°Ρ‚ΠΎΠΌΠΎΠ² примСсСй ΠΈ/ΠΈΠ»ΠΈ собствСнных Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² Π² cΠΈ v-Π·ΠΎΠ½Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π½Π΅Π±Ρ€Π΅Ρ‡ΡŒ.Π’ качСствС элСмСнтов ΠŸΠ΅Π»ΡŒΡ‚ΡŒΠ΅ с ΠΏΡ€Ρ‹ΠΆΠΊΠΎΠ²ΠΎΠΉ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠ΅ΠΉ элСктронов ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹: 1) h-Π΄ΠΈΠΎΠ΄, содСрТащий |d1)ΠΈ |d2)-области с Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΌΠΈ Π΄ΠΎΠ½ΠΎΡ€Π°ΠΌΠΈ Π΄Π²ΡƒΡ… сортов Π² зарядовых состояниях(0) ΠΈ (+1) ΠΈ ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ ΠΈΡ… Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ Π°ΠΊΡ†Π΅ΠΏΡ‚ΠΎΡ€Ρ‹ Π² зарядовом состоянии (βˆ’1); 2) ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½Ρ‹ΠΉ ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊ, содСрТащий собствСнныС t-Π΄Π΅Ρ„Π΅ΠΊΡ‚Ρ‹ Π² зарядовых состояниях (βˆ’1, 0, +1), Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠΎΠ½Ρ‹ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΈ Π°ΠΊΡ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² для управлСния распрСдСлСниСм t-Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² ΠΏΠΎ зарядовых состояниям. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Π·ΠΎΠ½Π½Ρ‹Π΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹ ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΡ‹Ρ… элСмСнтов ΠŸΠ΅Π»ΡŒΡ‚ΡŒΠ΅ Π² равновСсии Β ΠΈ ΠΏΡ€ΠΈ Π²ΠΎΠ·Π±ΡƒΠΆΠ΄Π΅Π½ΠΈΠΈ стационарного ΠΏΡ€Ρ‹ΠΆΠΊΠΎΠ²ΠΎΠ³ΠΎ элСктричСского Ρ‚ΠΎΠΊΠ°.РассмотрСна модСль h-Π΄ΠΈΠΎΠ΄Π°, содСрТащСго Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ Π΄ΠΎΠ½ΠΎΡ€Ρ‹ Π΄Π²ΡƒΡ… сортов |d1) ΠΈ |d2) с ΠΏΡ€Ρ‹ΠΆΠΊΠΎΠ²ΠΎΠΉ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠ΅ΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ элСктронов ΠΏΡ€ΠΈ компСнсации ΠΈΡ… Π½Π° 50 % Π°ΠΊΡ†Π΅ΠΏΡ‚ΠΎΡ€Π°ΠΌΠΈ. Показано, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΌ (прямом) элСктричСском смСщСнии Π΄ΠΈΠΎΠ΄Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ…Π»Π°ΠΆΠ΄Π΅Π½ΠΈΠ΅ (Π½Π°Π³Ρ€Π΅Π²Π°Π½ΠΈΠ΅) области Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ элСктричСского слоя ΠΌΠ΅ΠΆΠ΄Ρƒ |d1)ΠΈ |d2)-областями.РассмотрСн элСмСнт ΠŸΠ΅Π»ΡŒΡ‚ΡŒΠ΅ Π½Π° основС ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° с Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹ΠΌΠΈ t-Π΄Π΅Ρ„Π΅ΠΊΡ‚Π°ΠΌΠΈ. ΠŸΡ€ΠΈΠ½ΠΈΠΌΠ°Π»ΠΎΡΡŒ, Ρ‡Ρ‚ΠΎ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈΠΎΠ½ΠΎΠ² Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… Π°ΠΊΡ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² ΠΈ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² Ρ‚Π°ΠΊΠΎΠ²Ρ‹, Ρ‡Ρ‚ΠΎ практичСски всС t-Π΄Π΅Ρ„Π΅ΠΊΡ‚Ρ‹ находятся Π² зарядовом состоянии (0). Показано, Ρ‡Ρ‚ΠΎ Π² Ρ‚Π°ΠΊΠΎΠΌ элСмСнтС Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ…Π»Π°ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π° ΠΌΠ΅Ρ‚Π°Π»Π»-ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊ, находящСгося ΠΏΠΎΠ΄ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ элСктричСским ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ, ΠΈ Π½Π°Π³Ρ€Π΅Π²Π°Π½ΠΈΠ΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π°, ΠΏΠΎΠ΄ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ

    Inductive Type Impedance of Mo/n-Si Barrier Structures Irradiated with Alpha Particles

    Get PDF
    In silicon microelectronics, flat metal spirals are formed to create an integrated inductance. However, the maximum specific inductance of such spirals at low frequencies is limited to a value of the order of tens of microhenries per square centimeter. Gyrators, devices based on operational amplifiers with approximately the same specific inductance as spirals, are also used. Despite the fact that such solutions have been introduced into the production of integrated circuits, the task of searching for new elements with high values of specific inductance is relevant. An alternative to coils and gyrators can be the effect of negative differential capacitance (i.e., inductive type impedance), which is observed in barrier structures based on silicon. The purpose of the work is to study the low-frequency impedance of Schottky diodes (Mo/n-Si) containing defects induced by Ξ±-particles irradiation and determination of the parameters of these defects by methods of low-frequency impedance spectroscopy and DLTS (Deep Level Transient Spectroscopy). Unpackaged Schottky diodes Mo/n-Si (epitaxial layer of 5.5 ΞΌm thickness and resistivity of 1 Ohmβˆ™cm) produced by JSC β€œIntegral” are studied. Inductance measurements were carried out on the as manufactured diodes and on the diodes irradiated with alpha particles (the maximum kinetic energy of an Ξ±- particle is 5.147 MeV). The impedance of inductive type of the Schottky diodes at the corresponding DC forward current of 10 ΞΌA were measured in the AC frequency range from 20 Hz to 2 MHz. DLTS spectra were used to determine the parameters of radiation-induced defects. It is shown that irradiation of diodes with alpha particles produces three types of radiation-induced defects: A-centers with thermal activation energy of E1 β‰ˆ 190 meV, divacancies with activation energies of E2 β‰ˆ 230 meV and E3 β‰ˆ 410 meV, and Ecenters with activation energy of E4 β‰ˆ 440 meV measured relative to the bottom of c-band of silicon

    ИмпСданс ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° Π±Π°Ρ€ΡŒΠ΅Ρ€Π½Ρ‹Ρ… структур Mo/n-Si, ΠΎΠ±Π»ΡƒΡ‡Ρ‘Π½Π½Ρ‹Ρ… Π°Π»ΡŒΡ„Π°-частицами

    Get PDF
    In silicon microelectronics, flat metal spirals are formed to create an integrated inductance. However, the maximum specific inductance of such spirals at low frequencies is limited to a value of the order of tens of microhenries per square centimeter. Gyrators, devices based on operational amplifiers with approximately the same specific inductance as spirals, are also used. Despite the fact that such solutions have been introduced into the production of integrated circuits, the task of searching for new elements with high values of specific inductance is relevant. An alternative to coils and gyrators can be the effect of negative differential capacitance (i.e., inductive type impedance), which is observed in barrier structures based on silicon.The purpose of the work is to study the low-frequency impedance of Schottky diodes (Mo/n-Si) containing defects induced by Ξ±-particles irradiation and determination of the parameters of these defects by methods of low-frequency impedance spectroscopy and DLTS (Deep Level Transient Spectroscopy).Unpackaged Schottky diodes Mo/n-Si (epitaxial layer of 5.5 ΞΌm thickness and resistivity of 1 Ohmβˆ™cm) produced by JSC β€œIntegral” are studied. Inductance measurements were carried out on the as manufactured diodes and on the diodes irradiated with alpha particles (the maximum kinetic energy of an Ξ±particle is 5.147 MeV). The impedance of inductive type of the Schottky diodes at the corresponding DC forward current of 10 Β΅A were measured in the AC frequency range from 20 Hz to 2 MHz. DLTS spectra were used to determine the parameters of radiation-induced defects. It is shown that irradiation of diodes with alpha particles produces three types of radiation-induced defects: A-centers with thermal activation energy of E1Β β‰ˆ 190 meV, divacancies with activation energies of E2Β β‰ˆ 230 meV and E3Β β‰ˆ 410 meV, and Ecenters with activation energy of E4Β β‰ˆ 440 meV measured relative to the bottom of c-band of silicon.Π’ ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²ΠΎΠΉ микроэлСктроникС для создания ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ индуктивности Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‚ плоскиС мСталличСскиС спирали. Однако максимальная ΡƒΠ΄Π΅Π»ΡŒΠ½Π°Ρ ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ‚Π°ΠΊΠΈΡ… спиралСй Π½Π° Π½ΠΈΠ·ΠΊΠΈΡ… частотах ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ порядка дСсятков ΠΌΠΈΠΊΡ€ΠΎΠ³Π΅Π½Ρ€ΠΈ Π½Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ сантимСтр. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Ρ‚Π°ΠΊΠΆΠ΅ Π³ΠΈΡ€Π°Ρ‚ΠΎΡ€Ρ‹ – устройства Π½Π° основС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… усилитСлСй, ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ с Ρ‚Π°ΠΊΠΎΠΉ ΠΆΠ΅ ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ, ΠΊΠ°ΠΊ ΠΈ спирали. НСсмотря Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΈΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π²Π½Π΅Π΄Ρ€Π΅Π½Ρ‹ Π² производство ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… микросхСм, Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ являСтся Π·Π°Π΄Π°Ρ‡Π° поиска Π½ΠΎΠ²Ρ‹Ρ… элСмСнтов с большими значСниями ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΉ индуктивности. ΠΠ»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²ΠΎΠΉ спиралям ΠΈ Π³ΠΈΡ€Π°Ρ‚ΠΎΡ€Π°ΠΌ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‚Π°Ρ‚ΡŒ эффСкт ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ёмкости (Ρ‚. Π΅. импСданса ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°), Π½Π°Π±Π»ΡŽΠ΄Π°Π΅ΠΌΡ‹ΠΉ Π² Π±Π°Ρ€ΡŒΠ΅Ρ€Π½Ρ‹Ρ… структурах Π½Π° ΠΊΡ€Π΅ΠΌΠ½ΠΈΠΈ.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ – исслСдованиС низкочастотного импСданса Π΄ΠΈΠΎΠ΄ΠΎΠ² Π¨ΠΎΡ‚Ρ‚ΠΊΠΈ (Mo/n-Si), содСрТащих Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ Π΄Π΅Ρ„Π΅ΠΊΡ‚Ρ‹, создаваСмыС Ξ±-частицами, ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² этих Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ низкочастотной импСдансной спСктроскопии ΠΈ спСктроскопии DLTS (Deep Level Transient Spectroscopy).Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ бСскорпусныС Π΄ΠΈΠΎΠ΄Ρ‹ Π¨ΠΎΡ‚Ρ‚ΠΊΠΈ 5.5КЭЀ-1 (Mo/n-Si) производства ОАО Β«Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π»Β». Π˜Π·ΠΌΠ΅Ρ€Π΅Π½ΠΈΡ индуктивности ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈΡΡŒ Π½Π° исходных Π΄ΠΈΠΎΠ΄Π°Ρ… ΠΈ Π½Π° Π΄ΠΈΠΎΠ΄Π°Ρ…, ΠΎΠ±Π»ΡƒΡ‡Ρ‘Π½Π½Ρ‹Ρ… Π°Π»ΡŒΡ„Π°-частицами (максимальная кинСтичСская энСргия Ξ±-частицы 5.147 ΠœΡΠ’). Π’ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ частот ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ° ΠΎΡ‚ 20 Π“Ρ† Π΄ΠΎ 2 ΠœΠ“Ρ† ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ импСданс ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° Π΄ΠΈΠΎΠ΄ΠΎΠ² ΠΏΡ€ΠΈ постоянном прямом Ρ‚ΠΎΠΊΠ΅ 10 мкА. Для опрСдСлСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² ΠΈΠ·ΠΌΠ΅Ρ€ΡΠ»ΠΈΡΡŒ спСктры DLTS. Показано, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠΈ Π΄ΠΈΠΎΠ΄ΠΎΠ² Π¨ΠΎΡ‚Ρ‚ΠΊΠΈ Π°Π»ΡŒΡ„Π°-частицами образуСтся Ρ‚Ρ€ΠΈ Ρ‚ΠΈΠΏΠ° Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ²: A-Ρ†Π΅Π½Ρ‚Ρ€Ρ‹ с энСргиСй тСрмичСской Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ E1Β β‰ˆ 190 мэВ, дивакансии с энСргиями Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ E2Β β‰ˆ 230 мэВ ΠΈ E3Β β‰ˆ 410 мэВ ΠΈ E-Ρ†Π΅Π½Ρ‚Ρ€Ρ‹ с энСргиСй Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ E4Β β‰ˆ 440 мэВ, отсчитанныС ΠΎΡ‚ Π΄Π½Π° c-Π·ΠΎΠ½Ρ‹ крСмния

    Spin dependent point potentials in one and three dimensions

    Full text link
    We consider a system realized with one spinless quantum particle and an array of NN spins 1/2 in dimension one and three. We characterize all the Hamiltonians obtained as point perturbations of an assigned free dynamics in terms of some ``generalized boundary conditions''. For every boundary condition we give the explicit formula for the resolvent of the corresponding Hamiltonian. We discuss the problem of locality and give two examples of spin dependent point potentials that could be of interest as multi-component solvable models.Comment: 15 pages, some misprints corrected, one example added, some references modified or adde

    РАБЧЕВ Π‘Π’ΠΠ’Π˜Π§Π•Π‘ΠšΠ˜Π₯ ΠŸΠΠ ΠΠœΠ•Π’Π ΠžΠ’ ΠšΠ Π•ΠœΠΠ˜Π•Π’ΠžΠ“Πž Π”Π˜ΠžΠ”Π, Π‘ΠžΠ”Π•Π Π–ΠΠ©Π•Π“Πž Π’ Π‘Π˜ΠœΠœΠ•Π’Π Π˜Π§ΠΠžΠœ p–n-ΠŸΠ•Π Π•Π₯ΠžΠ”Π• Ξ΄-Π‘Π›ΠžΠ™ Π’ΠžΠ§Π•Π§ΠΠ«Π₯ Π’Π Π•Π₯ЗАРЯДНЫΠ₯ Π”Π•Π€Π•ΠšΠ’ΠžΠ’

    Get PDF
    The study of semiconductor materials and devices containing a narrow layer of impurity atoms and/or intrinsic point defects of the crystal lattice is of fundamental and practical interest. The aim of the study is to calculate the electric parameters of a symmetric silicon diode, in the flat p–n-junction of which a Ξ΄-layer of point triple-charged t-defects is formed. Such a diode is called p–t–n-diode, similarly to p–i–n-diode.Each t-defect can be in one of the three charge states (βˆ’1, 0, and +1; in the units of the elementary charge). It is assumed that at room temperature all hydrogen-like acceptors in p-region and hydrogen-like donors in n-region are ionized. It was assumed that the cross-section for v-band hole capture on t-defects is greater than the cross-section for c-band electron capture on t-defects.The system of stationary nonlinear differential equations, which describe in the drift-diffusion approximation a migration of electrons and holes in semiconductors, is solved numerically. The static capacityvoltage and current-voltage characteristics of the silicon diode with nondegenerate regions of pand n-type of electrical conductivity are calculated for forward and reverse electric bias voltage.It is shown by calculation that in the p–t–n-diode containing the Ξ΄-layer of t-defects, at the forward bias a region of current density stabilization occurs. At the reverse bias the current density in such a diode is much greater than the one in a p–n-diode without t-defects. With the reverse bias the capacitance of the p–t–n-diode, in contrast to the p–n-diode, increases at first and then decreases.Научный ΠΈ практичСский интСрСс прСдставляСт ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΈ ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ² с ΡƒΠ·ΠΊΠΈΠΌ слоСм Π°Ρ‚ΠΎΠΌΠΎΠ² примСсСй ΠΈ/ΠΈΠ»ΠΈ собствСнных Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² кристалличСской Ρ€Π΅ΡˆΠ΅Ρ‚ΠΊΠΈ. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ – Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ элСктричСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ симмСтричного ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²ΠΎΠ³ΠΎ Π΄ΠΈΠΎΠ΄Π°, Π² плоском p–n-ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ сформирован Ξ΄-слой Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… трСхзарядных t-Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ². Π’Π°ΠΊΠΎΠΉ Π΄ΠΈΠΎΠ΄ называСтся p–t–n-Π΄ΠΈΠΎΠ΄ΠΎΠΌ, ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎ p–i–n-Π΄ΠΈΠΎΠ΄Ρƒ.ΠšΠ°ΠΆΠ΄Ρ‹ΠΉ t-Π΄Π΅Ρ„Π΅ΠΊΡ‚ ΠΌΠΎΠΆΠ΅Ρ‚ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ Π² ΠΎΠ΄Π½ΠΎΠΌ ΠΈΠ· Ρ‚Ρ€Π΅Ρ… зарядовых состояний (βˆ’1, 0, +1; Π² Π΅Π΄ΠΈΠ½ΠΈΡ†Π°Ρ… элСмСнтарного заряда). БчитаСтся, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΊΠΎΠΌΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ всС Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ Π°ΠΊΡ†Π΅ΠΏΡ‚ΠΎΡ€Ρ‹ Π² p-области ΠΈ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ Π΄ΠΎΠ½ΠΎΡ€Ρ‹ Π² n-области ΠΈΠΎΠ½ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹. ΠŸΡ€ΠΈΠ½ΠΈΠΌΠ°Π»ΠΎΡΡŒ, Ρ‡Ρ‚ΠΎ сСчСниС Π·Π°Ρ…Π²Π°Ρ‚Π° Π΄Ρ‹Ρ€ΠΎΠΊ v-Π·ΠΎΠ½Ρ‹ Π½Π° t-Π΄Π΅Ρ„Π΅ΠΊΡ‚Ρ‹ большС сСчСния Π·Π°Ρ…Π²Π°Ρ‚Π° элСктронов c-Π·ΠΎΠ½Ρ‹ Π½Π° t-Π΄Π΅Ρ„Π΅ΠΊΡ‚Ρ‹.ЧислСнно Ρ€Π΅ΡˆΠ΅Π½Π° систСма cΡ‚Π°Ρ†ΠΈΠΎΠ½Π°Ρ€Π½Ρ‹Ρ… Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ, ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰ΠΈΡ… Π² Π΄Ρ€Π΅ΠΉΡ„ΠΎΠ²ΠΎ-Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠΌ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΡŽ элСктронов ΠΈ Π΄Ρ‹Ρ€ΠΎΠΊ Π² ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ…. Рассчитаны статичСскиС Π²ΠΎΠ»ΡŒΡ‚-Ρ„Π°Ρ€Π°Π΄Π½Ρ‹Π΅ ΠΈ Π²ΠΎΠ»ΡŒΡ‚-Π°ΠΌΠΏΠ΅Ρ€Π½Ρ‹Π΅ характСристики ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²ΠΎΠ³ΠΎ Π΄ΠΈΠΎΠ΄Π° с Π½Π΅Π²Ρ‹Ρ€ΠΎΠΆΠ΄Π΅Π½Π½Ρ‹ΠΌΠΈ областями p- ΠΈ n-Ρ‚ΠΈΠΏΠ° элСктропроводности ΠΏΡ€ΠΈ прямом ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΌ элСктричСском напряТСнии смСщСния.РасчСтным ΠΏΡƒΡ‚Π΅ΠΌ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π² p–t–n-Π΄ΠΈΠΎΠ΄Π΅, содСрТащСм Ξ΄-слой t-Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ², ΠΏΡ€ΠΈ прямом смСщСнии имССтся участок стабилизации плотности Ρ‚ΠΎΠΊΠ°. ΠŸΡ€ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΌ смСщСнии ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ Ρ‚ΠΎΠΊΠ° Π² Ρ‚Π°ΠΊΠΎΠΌ Π΄ΠΈΠΎΠ΄Π΅ ΠΌΠ½ΠΎΠ³ΠΎ большС, Ρ‡Π΅ΠΌ Π² p–n-Π΄ΠΈΠΎΠ΄Π΅ Π±Π΅Π· t-Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ². ΠŸΡ€ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ смСщСния Π΅ΠΌΠΊΠΎΡΡ‚ΡŒ p–t–n-Π΄ΠΈΠΎΠ΄Π°, Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ p–n-Π΄ΠΈΠΎΠ΄Π°, Π²Π½Π°Ρ‡Π°Π»Π΅ увСличиваСтся, Π° Π·Π°Ρ‚Π΅ΠΌ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ

    ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ сопротивлСния p–n-ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΎΠ² биполярного транзистора Π² Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ импСдансной спСктроскопии

    Get PDF
    Controlling of parameters of manufactured transistors and interoperational controlling during their production are necessary conditions for production of competitive products of electronic industry. Traditionally for controlling of bipolar transistors the direct current measurements and registration of capacity-voltage characteristics are used. Carrying out measurements on alternating current in a wide interval of frequencies (20 Hz–30 MHz) will allow to obtain additional information on parameters of bipolar transistors. The purpose of the work is to show the possibilities of the method of impedance spectroscopy for controlling of differential resistance ofΒ p–n-junctions of the bipolarΒ p–n–p-transistor in active mode.The KT814GΒ p–n–p-transistor manufactured by JSC β€œINTEGRAL” was studied by the method of impedance spectroscopy. The values of differential electrical resistance and capacitance for base–emitter and base–collectorΒ p–n-junctions are defi at direct currents in base from 0.8 to 46 Β΅A.The results of the work can be applied to elaboration of techniques of fi checking of discrete bipolar semiconductor devices.ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π³ΠΎΡ‚ΠΎΠ²Ρ‹Ρ… транзисторов ΠΈ ΠΌΠ΅ΠΆΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ ΠΏΡ€ΠΈ ΠΈΡ… ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ΠΌΠΈ условия выпуска конкурСнтоспособных ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ элСктронной ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ. Π’Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎ для контроля биполярных транзисторов ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ измСрСния Π½Π° постоянном Ρ‚ΠΎΠΊΠ΅ ΠΈ рСгистрация Π²ΠΎΠ»ΡŒΡ‚-Ρ„Π°Ρ€Π°Π΄Π½Ρ‹Ρ… характСристик. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ Π½Π° ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ Ρ‚ΠΎΠΊΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ ΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°Ρ… биполярных транзисторов.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹Β β€“Β ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ возмоТности ΠΌΠ΅Ρ‚ΠΎΠ΄Π° импСдансной спСктроскопии для контроля Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ элСктричСского сопротивлСния p–n-ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΎΠ² биполярного p–n–p-транзистора Π² Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ импСдансной спСктроскопии исслСдован p–n–p-транзистор КВ814Π“ производства ОАО Β«Π˜ΠΠ’Π•Π“Π ΠΠ›Β». На ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ Ρ‚ΠΎΠΊΠ΅ Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ частот 20 Hz–30 MHz ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ значСния Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ элСктричСского сопротивлСния ΠΈ Смкости p–n-ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΎΠ² база–эмиттСра ΠΈ база–коллСктора ΠΏΡ€ΠΈ постоянных Ρ‚ΠΎΠΊΠ°Ρ… Π±Π°Π·Ρ‹ ΠΎΡ‚ 0,8 Π΄ΠΎ 46 Β΅A.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΏΡ€ΠΈ ΠΎΡ‚Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ контроля дискрСтных биполярных ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²Ρ‹Ρ… ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ²

    Boundary relations and generalized resolvents of symmetric operators

    Get PDF
    The Kre\u{\i}n-Naimark formula provides a parametrization of all selfadjoint exit space extensions of a, not necessarily densely defined, symmetric operator, in terms of maximal dissipative (in \dC_+) holomorphic linear relations on the parameter space (the so-called Nevanlinna families). The new notion of a boundary relation makes it possible to interpret these parameter families as Weyl families of boundary relations and to establish a simple coupling method to construct the generalized resolvents from the given parameter family. The general version of the coupling method is introduced and the role of boundary relations and their Weyl families for the Kre\u{\i}n-Naimark formula is investigated and explained.Comment: 47 page

    ВлияниС экстракции Π΄Ρ‹Ρ€ΠΎΠΊ ΠΈΠ· Π±Π°Π·ΠΎΠ²ΠΎΠΉ области ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²ΠΎΠ³ΠΎ p–n–p-транзистора Π½Π° Π΅Π³ΠΎ Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΉ импСданс

    Get PDF
    Transistor structures are the basic elements of integrated circuitry and are often used to create not only transistors themselves, but also diodes, resistors, and capacitors. Determining the mechanism of the occurrence of inductive type impedance in semiconductor structures is an urgent task, the solution of which will create the prerequisites for the development of solid-state analogs of inductors. The purpose of the work is to establish the effect of extraction of non-equilibrium charge carriers from the base region on the reactive impedance of a bipolarΒ p–n–pΒ transistor.Using impedance spectroscopy in the frequency range 20 Hz–30 MHz, the structures based onΒ p–n–pΒ transistors KT814G manufactured by JSC β€œINTEGRAL” were studied. It is shown that in the transistor structures it is possible to observe the β€œeffect of negative capacitance” (inductive type impedance). It is established that the most probable cause of the inductive type impedance is the accumulation of uncompensated charge of holes in the base, the value of inductive impedance is influenced by both the injection efficiency in the base–emitter junction and the extraction efficiency in the base–collector junction.The results can be applied in the elaboration of technologies for the formation of elements of silicon based integrated circuits with an impedance of inductive type.ВранзисторныС структуры ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π±Π°Π·ΠΎΠ²Ρ‹ΠΌΠΈ элСмСнтами ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ схСмотСхники ΠΈ часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ для создания Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ собствСнно транзисторов, Π½ΠΎ ΠΈ Π΄ΠΈΠΎΠ΄ΠΎΠ², рСзисторов, кондСнсаторов. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° возникновСния импСданса ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° Π² ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²Ρ‹Ρ… структурах являСтся Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ, Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ создаст прСдпосылки ΠΊ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Ρ‚Π²Π΅Ρ€Π΄ΠΎΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π°Π½Π°Π»ΠΎΠ³ΠΎΠ² ΠΊΠ°Ρ‚ΡƒΡˆΠ΅ΠΊ индуктивности. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ – ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ влияниС экстракции нСравновСсных носитСлСй заряда ΠΈΠ· Π±Π°Π·ΠΎΠ²ΠΎΠΉ области Π½Π° Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΉ импСданс биполярного p–n–p-транзистора.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ импСдансной спСктроскопии Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ частот 20 Hz–30 MHz исслСдованы структуры Π½Π° Π±Π°Π·Π΅Β p–n–p-транзисторов КВ814Π“ производства ОАО Β«Π˜ΠΠ’Π•Π“Π ΠΠ›Β». Показано, Ρ‡Ρ‚ΠΎ Π² транзисторных структурах Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ наблюдСниС «эффСкта ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ёмкости» (импСданс ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°). УстановлСно, Ρ‡Ρ‚ΠΎ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ вСроятной ΠΏΡ€ΠΈΡ‡ΠΈΠ½ΠΎΠΉ возникновСния импСданса ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° являСтся Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ нСскомпСнсированного заряда Π΄Ρ‹Ρ€ΠΎΠΊ Π² Π±Π°Π·Π΅, Π° Π½Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ импСданса влияСт ΠΊΠ°ΠΊ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈΠ½ΠΆΠ΅ΠΊΡ†ΠΈΠΈ Π² ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ база–эмиттСр, Ρ‚Π°ΠΊ ΠΈ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ экстракции Π² ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ база–коллСктор.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ формирования элСмСнтов ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… микросхСм Π½Π° основС крСмния с импСдансом ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°
    • …
    corecore