583 research outputs found

    Optical properties of small polarons from dynamical mean-field theory

    Full text link
    The optical properties of polarons are studied in the framework of the Holstein model by applying the dynamical mean-field theory. This approach allows to enlighten important quantitative and qualitative deviations from the limiting treatments of small polaron theory, that should be considered when interpreting experimental data. In the antiadiabatic regime, accounting on the same footing for a finite phonon frequency and a finite electron bandwidth allows to address the evolution of the optical absorption away from the well-understood molecular limit. It is shown that the width of the multiphonon peaks in the optical spectra depends on the temperature and on the frequency in a way that contradicts the commonly accepted results, most notably in the strong coupling case. In the adiabatic regime, on the other hand, the present method allows to identify a wide range of parameters of experimental interest, where the electron bandwidth is comparable or larger than the broadening of the Franck-Condon line, leading to a strong modification of both the position and the shape of the polaronic absorption. An analytical expression is derived in the limit of vanishing broadening, which improves over the existing formulas and whose validity extends to any finite-dimensional lattice. In the same adiabatic regime, at intermediate values of the interaction strength, the optical absorption exhibits a characteristic reentrant behavior, with the emergence of sharp features upon increasing the temperature -- polaron interband transitions -- which are peculiar of the polaron crossover, and for which analytical expressions are provided.Comment: 16 pages, 6 figure

    Properties of quasi-periodic pulsations in solar flares from a single active region

    Get PDF
    We investigate the properties of a set of solar flares originating from a single active region (AR) that exhibit QPPs, and look for signs of the QPP periods relating to AR properties. The AR studied, best known as NOAA 12192, was unusually long-lived and produced 181 flares. Data from the GOES, EVE, Fermi, Vernov and NoRH observatories were used to determine if QPPs were present in the flares. For the soft X-ray GOES and EVE data, the time derivative of the signal was used. Power spectra of the time series data (without any form of detrending) were inspected, and flares with a peak above the 95% confidence level in the spectrum were labelled as having candidate QPPs. The confidence levels were determined taking account of uncertainties and the possible presence of red noise. AR properties were determined using HMI line of sight magnetograms. A total of 37 flares (20% of the sample) show good evidence of having QPPs, and some of the pulsations can be seen in data from multiple instruments and in different wavebands. The QPP periods show a weak correlation with the flare amplitude and duration, but this may be due to an observational bias. A stronger correlation was found between the QPP period and duration of the QPP signal, which can be partially but not entirely explained by observational constraints. No correlations were found with the AR area, bipole separation, or average magnetic field strength. The fact that a substantial fraction of the flare sample showed evidence of QPPs using a strict detection method with minimal processing of the data demonstrates that these QPPs are a real phenomenon, which cannot be explained by the presence of red noise or the superposition of multiple unrelated flares. The lack of correlation between the QPP periods and AR properties implies that the small-scale structure of the AR is important, and/or that different QPP mechanisms act in different cases.Comment: 23 pages, 57 figures. Accepted for publication by Astronomy & Astrophysic

    Diffusion and Transport Coefficients in Synthetic Opals

    Full text link
    Opals are structures composed of the closed packing of spheres in the size range of nano-to-micro meter. They are sintered to create small necks at the points of contact. We have solved the diffusion problem in such structures. The relation between the diffusion coefficient and the termal and electrical conductivity makes possible to estimate the transport coefficients of opal structures. We estimate this changes as function of the neck size and the mean-free path of the carriers. The theory presented is also applicable to the diffusion problem in other periodic structures.Comment: Submitted to PR

    Effect of pressure on the polarized infrared optical response of quasi-one-dimensional LaTiO3.41_{3.41}

    Full text link
    The pressure-induced changes in the optical properties of the quasi-one-dimensional conductor LaTiO3.41_{3.41} were studied by polarization-dependent mid-infrared micro-spectroscopy at room temperature. For the polarization of the incident radiation parallel to the conducting direction, the optical conductivity spectrum shows a pronounced mid-infrared absorption band, exhibiting a shift to lower frequencies and an increase in oscillator strength with increasing pressure. On the basis of its pressure dependence, interpretations of the band in terms of electronic transitions and polaronic excitations are discussed. Discontinuous changes in the optical response near 15 GPa are in agreement with a recently reported pressure-induced structural phase transition and indicate the onset of a dimensional crossover in this highly anisotropic system.Comment: 7 pages, 7 figure

    Relief and geology of the north polar region of the planet Venus

    Get PDF
    Description of topographic features is given for the North polar region of the planet Venus. Principal geomorphic types of terrain are characterized as well as their geologic relations. Relative ages of geologic units in Venus North polar region are discussed

    Metallic Xenon, Molecular Condensates, and Superconductivity

    Full text link
    A possibility of explaining the light absorption observed to occur under pressure-induced xenon metallization as due to the transition to the superconducting state is analyzed. The mechanism of the van der Waals bonding is discussed.Comment: LaTeX 2.09 (RevTeX), 4 pages, 4 PostScript figures included in tex

    Feasibility of a Small, Rapid Optical-to-IR Response, Next Generation Gamma Ray Burst Mission

    Full text link
    We present motivations for and study feasibility of a small, rapid optical to IR response gamma ray burst (GRB) space observatory. By analyzing existing GRB data, we give realistic detection rates for X-ray and optical/IR instruments of modest size under actual flight conditions. Given new capabilities of fast optical/IR response (about 1 s to target) and simultaneous multi-band imaging, such an observatory can have a reasonable event rate, likely leading to new science. Requiring a Swift-like orbit, duty cycle, and observing constraints, a Swift-BAT scaled down to 190 square cm of detector area would still detect and locate about 27 GRB per yr. for a trigger threshold of 6.5 sigma. About 23 percent of X-ray located GRB would be detected optically for a 10 cm diameter instrument (about 6 per yr. for the 6.5 sigma X-ray trigger).Comment: Elaborated text version of a poster presented at 2012 Malaga/Marbella symposiu

    Rationality of the moduli spaces of plane curves of sufficiently large degree

    Full text link
    We prove that the moduli space of plane curves of degree d is rational for all sufficiently large d.Comment: 18 pages; 1 figure; Macaulay2 scripts used can be found at http://www.uni-math.gwdg.de/bothmer/rationality/ or at the end of the latex source fil
    • …
    corecore