3,557 research outputs found

    Physics at International Linear Collider (ILC)

    Full text link
    International Linear Collider (ILC) is an electron-positron collider with the initial center-of-mass energy of 500 GeV which is upgradable to about 1 TeV later on. Its goal is to study the physics at TeV scale with unprecedented high sensitivities. The main topics include precision measurements of the Higgs particle properties, studies of supersymmtric particles and the underlying theoretical structure if supersymmetry turns out to be realized in nature, probing alternative possibilities for the origin of mass, and the cosmological connections thereof. In many channels, Higgs and leptonic sector in particular, ILC is substantially more sensitive than LHC, and is complementary to LHC overall. In this short article, we will have a quick look at the capabilities of ILC.Comment: To appear in JPSJ Vol76 No1

    Master integrals for massive two-loop Bhabha scattering in QED

    Full text link
    We present a set of scalar master integrals (MIs) needed for a complete treatment of massive two-loop corrections to Bhabha scattering in QED, including integrals with arbitrary fermionic loops. The status of analytical solutions for the MIs is reviewed and examples of some methods to solve MIs analytically are worked out in more detail. Analytical results for the pole terms in epsilon of so far unknown box MIs with five internal lines are given.Comment: 23 pages, 5 tables, 12 figures, references added, appendix B enlarge

    MW and sin^2\theta_eff in Split SUSY: present and future expectations

    Full text link
    We analyse the precision electroweak observables MW and sin^2\theta_eff and their correlations in the recently proposed Split SUSY model. We compare the results with the Standard Model and Minimal Supersymmetric Standard Model predictions, and with present and future experimental accuracies. Present experimental accuracies in (MW, sin^2\theta_eff) do not allow constraints to be placed on the Split SUSY parameter space. We find that the shifts in (MW, sin^2\theta_eff) induced by Split SUSY can be larger than the anticipated accuracy of the GigaZ option of the International Linear Collider, and that the most sensitive observable is sin^2\theta_eff. These large shifts are possible also for large chargino masses in scenarios with small tan(\beta) =~ 1.Comment: LaTeX, 13 pages, 4 figures. Comments adde

    Potentially bioavailable iron delivery by iceberg-hosted sediments and atmospheric dust to the polar oceans

    Get PDF
    Iceberg-hosted sediments and atmospheric dust transport potentially bioavailable iron to the Arctic and Southern oceans as ferrihydrite. Ferrihydrite is nanoparticulate and more soluble, as well as potentially more bioavailable, than other iron (oxyhydr)oxide minerals (lepidocrocite, goethite, and hematite). A suite of more than 50 iceberghosted sediments contain a mean content of 0.076 wt% Fe as ferrihydrite, which produces iceberg-hosted Fe fluxes ranging from 0.7 to 5.5 and 3.2 to 25 Gmoles yr 1 to the Arctic and Southern oceans respectively. Atmospheric dust (with little or no combustion products) contains a mean ferrihydrite Fe content of 0.038 wt% (corresponding to a fractional solubility of 1 %) and delivers much smaller Fe fluxes (0.02–0.07 Gmoles yr 1 to the Arctic Ocean and 0.0– 0.02 Gmoles yr 1 to the Southern Ocean). New dust flux data show that most atmospheric dust is delivered to sea ice where exposure to melting/re-freezing cycles may enhance fractional solubility, and thus fluxes, by a factor of approximately 2.5. Improved estimates for these particulate sources require additional data for the iceberg losses during fjord transit, the sediment content of icebergs, and samples of atmospheric dust delivered to the polar regions

    B Physics at the Z0 Resonance

    Get PDF
    B physics results from e+ e- annihilation at the Z0 resonance are reviewed. A vast program is summarised, including the study of B+, B0d, B0s and b baryon lifetimes, the time dependence of B0d and B0s oscillations, the width difference in the B0s system, and the measurements of the magnitudes of the CKM matrix elements Vcb and Vub.Comment: 17 pages, 8 figures, presented at the UK Phenomenology Workshop on Heavy Flavour and CP Violation, 17-22 September 200

    Lepton flavor conserving Z -> l^+ l^-$ decays in the general two Higgs doublet model

    Get PDF
    We calculate the new physics effects to the branching ratios of the lepton flavor conserving decays Z -> l^+ l^- in the framework of the general two Higgs Doublet model. We predict the upper limits for the couplings |\bar{\xi}^{D}_{N,\mu\tau}| and |\bar{\xi}^{D}_{N,\tau\tau}| as 3\times 10^2 GeV and 1\times 10^2 GeV, respectively.Comment: 9 pages, 3 figure

    Lepton flavor violation two-body decays of quarkoniums

    Full text link
    In this paper we firstly study various model-independent bounds on lepton flavor violation (LFV) in processes of J/ΨJ/\Psi, Ψ′\Psi' and Υ\Upsilon two-body decays, then calculate their branch ratios % By using the constraints from other ways, we obtain %the indirect bounds of Br(J/Ψ,Ψ′,Υ→ll′){\rm Br} (J/\Psi,\Psi',\Upsilon \to ll') in models of the leptoquark, RR violating MSSM and topcolor assisted technicolor(TC2) models.Comment: 14 pages, 4 figures, submitted to PR

    Lepton Flavor Violation in Supersymmetric SO(10) Grand Unified Models

    Get PDF
    The study for lepton flavor violation combined with the neutrino oscillation may provide more information about the lepton flavor structure of the grand unified theory. In this paper, we study two lepton flavor violation processes, τ→μγ\tau\to \mu\gamma and Z→τμZ\to \tau\mu, in the context of supersymmetric SO(10) grand unified models. We find the two processes are both of phenomenological interest. In particular the latter may be important in some supersymmetric parameter space where the former is suppressed. Thus, Z-dacay may offer another chance for looking for lepton flavor violation.Comment: 26 pages, 10 figure

    Invisible Z-Boson Decays at e+e- Colliders

    Full text link
    The measurement of the invisible Z-boson decay width at e+e- colliders can be done "indirectly", by subtracting the Z-boson visible partial widths from the Z-boson total width, or "directly", from the process e+e- -> \gamma \nu \bar{\nu}. Both procedures are sensitive to different types of new physics and provide information about the couplings of the neutrinos to the Z-boson. At present, measurements at LEP and CHARM II are capable of constraining the left-handed Z\nu\nu-coupling, 0.45 <~ g_L <~ 0.5, while the right-handed one is only mildly bounded, |g_R| <= 0.2. We show that measurements at a future e+e- linear collider at different center-of-mass energies, \sqrt{s} = MZ and \sqrt{s}s ~ 170 GeV, would translate into a markedly more precise measurement of the Z\nu\nu-couplings. A statistically significant deviation from Standard Model predictions will point toward different new physics mechanisms, depending on whether the discrepancy appears in the direct or the indirect measurement of the invisible Z-width. We discuss some scenarios which illustrate the ability of different invisible Z-boson decay measurements to constrain new physics beyond the Standard Model

    Charged Lepton Flavour Violation from Massive Neutrinos in Z Decays

    Get PDF
    Present evidences for neutrino masses and lepton flavour mixings allow to predict, in the Standard Model with light neutrinos, branching rates for the decays Z --> e mu, mu tau, e tau of less than 10^{-54}, while present experimental exclusion limits from LEP 1 are of order 10^{-5}. The GigaZ option of the TESLA Linear Collider project will extend the sensitivity down to about 10^{-8}. We study in a systematic way some minimal extensions of the Standard Model and show that GigaZ might well be sensitive to the rates predicted from these scenarios.Comment: 24 pages, 4 figures, LaTeX, uses axodraw.st
    • …
    corecore