7,973 research outputs found

    Clouds, photolysis and regional tropospheric ozone budgets.

    Get PDF
    We use a three-dimensional chemical transport model to examine the shortwave radiative effects of clouds on the tropospheric ozone budget. In addition to looking at changes in global concentrations as previous studies have done, we examine changes in ozone chemical production and loss caused by clouds and how these vary in different parts of the troposphere. On a global scale, we find that clouds have a modest effect on ozone chemistry, but on a regional scale their role is much more significant, with the size of the response dependent on the region. The largest averaged changes in chemical budgets (±10–14%) are found in the marine troposphere, where cloud optical depths are high. We demonstrate that cloud effects are small on average in the middle troposphere because this is a transition region between reduction and enhancement in photolysis rates. We show that increases in boundary layer ozone due to clouds are driven by large-scale changes in downward ozone transport from higher in the troposphere rather than by decreases in in-situ ozone chemical loss rates. Increases in upper tropospheric ozone are caused by higher production rates due to backscattering of radiation and consequent increases in photolysis rates, mainly J(NO2). The global radiative effect of clouds on isoprene, through decreases of OH in the lower troposphere, is stronger than on ozone. Tropospheric isoprene lifetime increases by 7% when taking clouds into account. We compare the importance of clouds in contributing to uncertainties in the global ozone budget with the role of other radiatively-important factors. The budget is most sensitive to the overhead ozone column, while surface albedo and clouds have smaller effects. However, uncertainty in representing the spatial distribution of clouds may lead to a large sensitivity of the ozone budget components on regional scales

    Low Redshift Intergalactic Absorption Lines in the Spectrum of HE0226-4110

    Full text link
    We present an analysis of the FUSE and STIS E140M spectra of HE0226-4110 (z=0.495). We detect 56 Lyman absorbers and 5 O VI absorbers. The number of intervening O VI systems per unit redshift with W>50 m\AA is dN(O VI)/dz~ 11. The O VI systems unambiguously trace hot gas only in one case. For the 4 other O VI systems, photoionization and collisional ionization models are viable options to explain the observed column densities of the O VI and the other ions. If the O VI systems are mostly photoionized, only a fraction of the observed O VI will contribute to the baryonic density of the warm-hot ionized medium (WHIM) along this line of sight. Combining our results with previous ones, we show that there is a general increase of N(O VI) with increasing b(O VI). Cooling flow models can reproduce the N-b distribution but fail to reproduce the observed ionic ratios. A comparison of the number of O I, O II, O III, O IV, and O VI systems per unit redshift show that the low-z IGM is more highly ionized than weakly ionized. We confirm that photoionized O VI systems show a decreasing ionization parameter with increasing H I column density. O VI absorbers with collisional ionization/photoionization degeneracy follow this relation, possibly suggesting that they are principally photoionized. We find that the photoionized O VI systems in the low redshift IGM have a median abundance of 0.3 solar. We do not find additional Ne VIII systems other than the one found by Savage et al., although our sensitivity should have allowed the detection of Ne VIII in O VI systems at T~(0.6-1.3)x10^6 K (if CIE applies). Since the bulk of the WHIM is believed to be at temperatures T>10^6 K, the hot part of the WHIM remains to be discovered with FUV--EUV metal-line transitions.Comment: Accepted for publication in the ApJS. Full resolution figures available at http://www.journals.uchicago.edu/ApJ/journal/preprints/ApJS63975.preprint.pd

    Interannual variability of tropospheric composition:the influence of changes in emissions, meteorology and clouds

    Get PDF
    We have run a chemistry transport model (CTM) to systematically examine the drivers of interannual variability of tropospheric composition during 1996-2000. This period was characterised by anomalous meteorological conditions associated with the strong El Nino of 1997-1998 and intense wildfires, which produced a large amount of pollution. On a global scale, changing meteorology (winds, temperatures, humidity and clouds) is found to be the most important factor driving interannual variability of NO2 and ozone on the timescales considered. Changes in stratosphere-troposphere exchange, which are largely driven by meteorological variability, are found to play a particularly important role in driving ozone changes. The strong influence of emissions on NO2 and ozone interannual variability is largely confined to areas where intense biomass burning events occur. For CO, interannual variability is almost solely driven by emission changes, while for OH meteorology dominates, with the radiative influence of clouds being a very strong contributor. Through a simple attribution analysis for 1996-2000 we conclude that changing cloudiness drives 25% of the interannual variability of OH over Europe by affecting shortwave radiation. Over Indonesia this figure is as high as 71%. Changes in cloudiness contribute a small but non-negligible amount (up to 6%) to the interannual variability of ozone over Europe and Indonesia. This suggests that future assessments of trends in tropospheric oxidizing capacity should account for interannual variability in cloudiness, a factor neglected in many previous studies

    GHRS and ORFEUS-II Observations of the Highly Ionized Interstellar Medium Toward ESO141-055

    Get PDF
    We present Goddard High Resolution Spectrograph and ORFEUS-II measurements of Si IV, CIV, N V, and O VI absorption in the interstellar medium of the Galactic disk and halo toward the nucleus of the Seyfert galaxy ESO141-055. The high ionization absorption is strong, with line strengths consistent with the spectral signature expected for hot (log T = 5-6) collisionally ionized gas in either a ``Galactic fountain'' or an inhomogeneous medium containing a mixture of conductive interfaces and turbulent mixing layers. The total O VI column density of log N ~ 15 suggests that the scale height of O VI is large (>3 kpc) in this direction. Comparison of the high ion column densities with measurements for other sight lines indicates that the highly ionized gas distribution is patchy. The amount of O VI perpendicular to the Galactic plane varies by at least a factor of ~4 among the complete halo sight lines thus far studied. In addition to the high ion absorption, lines of low ionization species are also present in the spectra. With the possible exception of Ar I, which may have a lower than expected abundance resulting from partial photoionization of gas along the sight line, the absorption strengths are typical of those expected for the warm, neutral interstellar medium. The sight line intercepts a cold molecular cloud with log N(H2) ~ 19. The cloud has an identifiable counterpart in IRAS 100-micron emission maps of this region of the sky. We detect a Ly-alpha absorber associated with ESO141-055 at z = 0.03492. This study presents an enticing glimpse into the interstellar and intergalactic absorption patterns that will be observed at high spectral resolution by the Far Ultraviolet Spectroscopic Explorer.Comment: 24 pages + 8 figures, uses aaspp4.sty. Accepted for publication in Ap

    Long lasting instabilities in granular mixtures

    Full text link
    We have performed experiments of axial segregation in the Oyama's drum. We have tested binary granular mixtures during very long times. The segregation patterns have been captured by a CCD camera and spatio-temporal graphs are created. We report the occurence of instabilities which can last several hours. We stress that those instabilities originate from the competition between axial and radial segregations. We put into evidence the occurence of giant fluctuations in the fraction of grain species along the surface during the unstable periods.Comment: 10 pages, 10 figures, (2002

    The properties of highly luminous IRAS galaxies

    Get PDF
    From a complete sample of 154 galaxies identified with IRAS sources in a 304 sq deg area centered on the South Galactic Pole, a subsample of 58 galaxies with L sub IR/L sub B > 3 was chosen. Low resolution spectra were obtained for 30% of the subsample and redshifts and relative emission line intensities were derived. As a class these galaxies are very luminous with = 2.9 x 10 to the 11th power L sub 0 and (L sub IR) max = 1.3 x 10 to the 12th power L sub 0. CCD images and JHK photometry were obtained for many of the subsample. The galaxies are for the most part newly identified and are optically faint, with a majority showing evidence of a recent interaction. Radio continuum observations of all galaxies of the subsample were recently obtained at 20 cm VLA with about 75% being detected in a typical integration time of about 10 minutes

    Dynamics and stress in gravity driven granular flow

    Full text link
    We study, using simulations, the steady-state flow of dry sand driven by gravity in two-dimensions. An investigation of the microscopic grain dynamics reveals that grains remain separated but with a power-law distribution of distances and times between collisions. While there are large random grain velocities, many of these fluctuations are correlated across the system and local rearrangements are very slow. Stresses in the system are almost entirely transfered by collisions and the structure of the stress tensor comes almost entirely from a bias in the directions in which collisions occur.Comment: 4 pages, 3 eps figures, RevTe

    A method for determining CP violating phase γ\gamma

    Full text link
    A new way of determining the phases of weak amplitudes in charged BB decays based on SU(3) symmetry is proposed. The CP violating phase γ\gamma can now be determined without the previous difficulty associated with electroweak penguins.Comment: 9 pages plus one figure, Revte

    Determining the Weak Phase γ\gamma From Charged BB Decays

    Full text link
    A quadrangle relation is shown to be satisfied by the amplitudes for B+π0K+, π+K0, ηK+B^+ \to \pi^0 K^+,~\pi^+ K^0,~\eta K^+, and ηK+\eta' K^+. By comparison with the corresponding relation satisfied by BB^- decay amplitudes, it is shown that the relative phases of all the amplitudes can be determined up to discrete ambiguities. Making use of an SU(3) relation between amplitudes contributing to the above decays and those contributing to B±π±π0B^{\pm} \to \pi^{\pm} \pi^0, it is then shown that one can determine the weak phase γArg(VubVcb/VusVcs)\gamma \equiv {\rm Arg} (V_{ub}^* V_{cb}/V_{us}^* V_{cs}), where VV is the Cabibbo-Kobayashi-Maskawa matrix describing the charge-changing weak interactions between the quarks (u,c,t)(u,c,t) and (d,s,b)(d,s,b).Comment: 16 pages, latex, 7 uuencoded figure
    corecore