947 research outputs found

    Entrapment of magnetic micro-crystals for on-chip electron spin resonance studies

    Full text link
    On-chip Electron Spin Resonance (ESR) of magnetic molecules requires the ability to precisely position nanosized samples in antinodes of the electro-magnetic field for maximal magnetic interaction. A method is developed to entrap micro-crystals containing spins in a well defined location on a substrate's surface. Traditional cavity ESR measurements are then performed on a mesoscopic crystal at 34 GHz. Polycrystalline diluted Cr5+^{5+} spins were entrapped as well and measured while approaching the lower limit of the ESR sensitivity. This method suggests the feasibility of on-chip ESR measurements at dilution refrigerator temperatures by enabling the positioning of samples atop an on-chip superconducting cavity.Comment: to appear in Journal of Applied Physic

    Magnetic strong coupling in a spin-photon system and transition to classical regime

    Full text link
    We study the energy level structure of the Tavis-Cumming model applied to an ensemble of independent magnetic spins s=1/2s=1/2 coupled to a variable number of photons. Rabi splittings are calculated and their distribution is analyzed as a functin of photon number nmaxn_{\rm max} and spin system size NN. A sharp transition in the distribution of the Rabi frequency is found at nmax≈Nn_{\rm max}\approx N. The width of the Rabi frequency spectrum diverges as N\sqrt{N} at this point. For increased number of photons nmax>Nn_{\rm max}>N, the Rabi frequencies converge to a value proportional to nmax\sqrt{n_{\rm max}}. This behavior is interpreted as analogous to the classical spin resonance mechanism where the photon is treated as a classical field and one resonance peak is expected. We also present experimental data demonstrating cooperative, magnetic strong coupling between a spin system and photons, measured at room temperature. This points towards quantum computing implementation with magnetic spins, using cavity quantum-electrodynamics techniques.Comment: Received 8 April 2010; revised manuscript received 17 June 2010; published 14 July 201

    Tunable multi-photon Rabi oscillations in an electronic spin system

    Full text link
    We report on multi-photon Rabi oscillations and controlled tuning of a multi-level system at room temperature (S=5/2 for Mn2+:MgO) in and out of a quasi-harmonic level configuration. The anisotropy is much smaller than the Zeeman splittings, such as the six level scheme shows only a small deviation from an equidistant diagram. This allows us to tune the spin dynamics by either compensating the cubic anisotropy with a precise static field orientation, or by microwave field intensity. Using the rotating frame approximation, the experiments are very well explained by both an analytical model and a generalized numerical model. The calculated multi-photon Rabi frequencies are in excellent agreement with the experimental data

    Multi-photon Rabi oscillations in high spin paramagnetic impurity

    Full text link
    We report on multiple photon monochromatic quantum oscillations (Rabi oscillations) observed by pulsed EPR (Electron Paramagnetic Resonance) of Mn2+^{2+} (S=5/2) impurities in MgO. We find that when the microwave magnetic field is similar or large than the anisotropy splitting, the Rabi oscillations have a spectrum made of many frequencies not predicted by the S=1/2 Rabi model. We show that these new frequencies come from multiple photon coherent manipulation of the multi-level spin impurity. We develop a model based on the crystal field theory and the rotating frame approximation, describing the observed phenomenon with a very good agreement.Comment: International Conference: Resonance in Condensed Matter Altshuler 10

    Simulated relationships between regional temperatures and large-scale circulation: 125 kyr BP (Eemian) and the preindustrial period

    No full text
    To investigate relationships between large-scale circulation and regional-scale temperatures during the last (Eemian) interglacial, a simulation with a general circulation model (GCM) under orbital forcing conditions of 125 kyr BP is compared with a simulation forced with the Late Holocene preindustrial conditions. Consistent with previous GCM simulations for the Eemian, higher northern summer 2-m temperatures are found, which are directly related to the different insolation. Differences in the mean circulation are evident such as, for instance, stronger northern winter westerlies toward Europe, which are associated with warmer temperatures in central and northeastern Europe in the Eemian simulation, while the circulation variability, analyzed by means of a principal component analysis of the sea level pressure (SLP) field, is very similar in both periods. As a consequence of the differences in the mean circulation the simulated Arctic Oscillation (AO) temperature signal in the northern winter, on interannual-to-multidecadal time scales, is weaker during the Eemian than today over large parts of the Northern Hemisphere. Correlations between the AO index and the central European temperature (CET) decrease by about 0.2. The winter and spring SLP anomalies over the North Atlantic/European domain that are most strongly linearly linked to the CET cover a smaller area and are shifted westward over the North Atlantic during the Eemian. However, the strength of the connection between CET and these SLP anomalies is similar in both simulations. The simulated differences in the AO temperature signal and in the SLP anomaly, which is linearly linked to the CET, suggest that during the Eemian the link between the large-scale circulation and temperaturesensitive proxy data from Europe may differ from present-day conditions and that this difference should be taken into account when inferring large-scale climate from temperature-sensitive proxy data

    Effect of high temperature heat treatments on the quality factor of a large-grain superconducting radio-frequency niobium cavity

    Get PDF
    Large-grain Nb has become a viable alternative to fine-grain Nb for the fabrication of superconducting radio-frequency cavities. In this contribution we report the results from a heat treatment study of a large-grain 1.5 GHz single-cell cavity made of "medium purity" Nb. The baseline surface preparation prior to heat treatment consisted of standard buffered chemical polishing. The heat treatment in the range 800 - 1400 C was done in a newly designed vacuum induction furnace. Q0 values of the order of 2x1010 at 2.0 K and peak surface magnetic field (Bp) of 90 mT were achieved reproducibly. A Q0-value of (5+-1)1010 at 2.0 K and Bp = 90 mT was obtained after heat treatment at 1400 C. This is the highest value ever reported at this temperature, frequency and field. Samples heat treated with the cavity at 1400 C were analyzed by secondary ion mass spectrometry, secondary electron microscopy, energy dispersive X-ray, point contact tunneling and X-ray diffraction and revealed a complex surface composition which includes titanium oxide, increased carbon and nitrogen content but reduced hydrogen concentration compared to a non heat-treated sample

    Investigation of the Electric Field and Charge Density Distribution of pristine and defective 2D WSe2_2 by Differential Phase Contrast Imaging

    Full text link
    Most properties of solid materials are defined by their internal electric field and charge density distributions which so far have been difficult to measure with sufficient spatial resolution. For 2D materials, the electric field at the atomic level in particular influences the optoelectronic properties. In this study, the atomic-scale electric field and charge density distribution of 2D WSe2_2 are revealed by using an emerging microscopy technique, differential phase contrast (DPC) imaging in the scanning transmission electron microscope (STEM). Combined with high-angle annular dark-field imaging the charge density distribution of bi- and trilayers of WSe2_2 is mapped. A measured higher positive charge density located at the selenium atomic columns compared to the tungsten atomic columns is reported, and possible reasons are discussed. Furthermore, the change in the electric field distribution of a selenium point defect in a trilayer is investigated exhibiting a characteristic electric field distribution in the vicinity of the defect: there are characteristic regions with locally enhanced and with locally reduced electric field magnitudes compared to the pristine lattice.Comment: 20 pages including the supplementary information, 3 figures in the main part and additional 2 figures in the supplementary informatio

    Liposomal amphotericin B twice weekly as antifungal prophylaxis in paediatric haematological malignancy patients

    Get PDF
    AbstractData on antifungal prophylaxis in paediatric cancer patients at high risk for invasive fungal disease (IFD) are scant. Intermittent administration of liposomal amphotericin B (LAMB) has been shown to be safe and effective in adult patients with haematological malignancies. We prospectively evaluated the safety and efficacy of prophylactic LAMB at a dosage of 2.5 mg/kg twice weekly in children at high risk for IFD. Efficacy was compared with that in a historical control group of patients with similar demographic characteristics not receiving LAMB prophylaxis. A total of 46 high-risk patients (24 boys; mean age, 7.7 years) with 187 episodes of antifungal prophylaxis were analysed. The median duration of neutropenia (<500/µL) was 10 days. LAMB was discontinued in four patients because of acute allergic reactions. Median values for creatinine and liver enzymes at end of treatment did not differ significantly from those at baseline. Hypokalaemia (<3.0 mmol/L) occurred with 13.5% of the prophylactic episodes, but was usually mild and always reversible. No proven/probable IFD occurred in patients receiving LAMB prophylaxis. In comparison, five proven and two probable IFDs were observed in 45 historical controls not receiving LAMB prophylaxis (p 0.01). LAMB prophylaxis had no impact on the use of empirical antifungal therapy. Systemic antifungal prophylaxis with LAMB 2.5 mg/kg twice weekly is feasible and safe, and seems to be an effective approach for antifungal prophylaxis in high-risk paediatric cancer patients
    • …
    corecore