45 research outputs found

    A virtuous cycle between invertebrate and robotics research: perspective on a decade of Living Machines research

    Get PDF
    Many invertebrates are ideal model systems on which to base robot design principles due to their success in solving seemingly complex tasks across domains while possessing smaller nervous systems than vertebrates. Three areas are particularly relevant for robot designers: Research on flying and crawling invertebrates has inspired new materials and geometries from which robot bodies (their morphologies) can be constructed, enabling a new generation of softer, smaller, and lighter robots. Research on walking insects has informed the design of new systems for controlling robot bodies (their motion control) and adapting their motion to their environment without costly computational methods. And research combining wet and computational neuroscience with robotic validation methods has revealed the structure and function of core circuits in the insect brain responsible for the navigation and swarming capabilities (their mental faculties) displayed by foraging insects. The last decade has seen significant progress in the application of principles extracted from invertebrates, as well as the application of biomimetic robots to model and better understand how animals function. This Perspectives paper on the past 10 years of the Living Machines conference outlines some of the most exciting recent advances in each of these fields before outlining lessons gleaned and the outlook for the next decade of invertebrate robotic research

    Insect tricks: two-phasic foot pad secretion prevents slipping

    No full text
    Many insects cling to vertical and inverted surfaces with pads that adhere by nanometre-thin films of liquid secretion. This fluid is an emulsion, consisting of watery droplets in an oily continuous phase. The detailed function of its two-phasic nature has remained unclear. Here we show that the pad emulsion provides a mechanism that prevents insects from slipping on smooth substrates. We discovered that it is possible to manipulate the adhesive secretion in vivo using smooth polyimide substrates that selectively absorb its watery component. While thick layers of polyimide spin-coated onto glass removed all visible hydrophilic droplets, thin coatings left the emulsion in its typical form. Force measurements of stick insect pads sliding on these substrates demonstrated that the reduction of the watery phase resulted in a significant decrease in friction forces. Artificial control pads made of polydimethylsiloxane showed no difference when tested on the same substrates, confirming that the effect is caused by the insects’ fluid-based adhesive system. Our findings suggest that insect adhesive pads use emulsions with non-Newtonian properties, which may have been optimized by natural selection. Emulsions as adhesive secretions combine the benefits of ‘wet’ adhesion and resistance against shear forces
    corecore