2,824 research outputs found

    On the role of continuum-driven eruptions in the evolution of very massive stars and Population III stars

    Get PDF
    We suggest that the mass lost during the evolution of very massive stars may be dominated by optically thick, continuum-driven outbursts or explosions, instead of by steady line-driven winds. In order for a massive star to become a WR star, it must shed its H envelope, but new estimates of the effects of clumping in winds indicate that line driving is vastly insufficient. We discuss massive stars above roughly 40-50 Msun, for which the best alternative is mass loss during brief eruptions of luminous blue variables (LBVs). Our clearest example of this phenomenon is the 19th century outburst of eta Car, when the star shed 12-20 Msun or more in less than a decade. Other examples are circumstellar nebulae of LBVs, extragalactic eta Car analogs (``supernova impostors''), and massive shells around SNe and GRBs. We do not yet fully understand what triggers LBV outbursts, but they occur nonetheless, and present a fundamental mystery in stellar astrophysics. Since line opacity from metals becomes too saturated, the extreme mass loss probably arises from a continuum-driven wind or a hydrodynamic explosion, both of which are insensitive to metallicity. As such, eruptive mass loss could have played a pivotal role in the evolution and fate of massive metal-poor stars in the early universe. If they occur in these Population III stars, such eruptions would profoundly affect the chemical yield and types of remnants from early SNe and hypernovae.Comment: 4 pages, 1 figure, accepted by ApJ Letter

    Discontinuation of metformin to prevent metformin-induced high colonic FDG uptake:is 48 h sufficient?

    Get PDF
    Objective: In this retrospective, single-center observational study, we investigated whether discontinuing metformin for at least 48 h prevents metformin-induced [18F]fluorodeoxyglucose (FDG) uptake in all segments of the colon. Methods: Patients with type 2 diabetes who were using metformin before undergoing an FDG PET/CT scan were included. Two groups were created: patients who discontinued metformin for less than 48 h (< 48 h group) and patients who discontinued metformin for between 48 and 72 h (≄ 48 h group). A control group comprised non-diabetic patients who were not using metformin before undergoing an FDG PET/CT. We visually scored the uptake of FDG in four segments of the colon—the ascendens, transversum, descendens, and rectosigmoid—using a four-point scale (1–4) and considered scores of 3 or 4 to be clinically significant. Results: Colonic FDG uptake in the ≄ 48 h group (n = 23) was higher than uptake in the control group (n = 96) in the colon descendens [odds ratio (OR) 14.0; 95% confidence interval (CI) 4.8–40.9; p value: 0.001] and rectosigmoid (OR 11.3; 95% CI 4.0–31.9; p value: 0.001), and there was no difference in the colon ascendens and transversum. Colonic FDG uptake in the < 48 h group (n = 25) was higher than uptake in the ≄ 48 h group (n = 23) in the colon transversum (OR 4.8; 95% CI 1.3–18.5; p value: 0.022) and rectosigmoid (p value: 0.023), and there was no difference in the colon ascendens and descendens. Conclusions: Discontinuing metformin for 48 h before undergoing an FDG PET/CT still gives a high uptake in the distal parts of the colon when compared with non-diabetic patients who are not using metformin. Discontinuing metformin for 48 h seems to be useful for scanning the more proximal segments of the colon

    The Missing Luminous Blue Variables and the Bistability Jump

    Get PDF
    We discuss an interesting feature of the distribution of luminous blue variables on the H-R diagram, and we propose a connection with the bistability jump in the winds of early-type supergiants. There appears to be a deficiency of quiescent LBVs on the S Dor instability strip at luminosities between log L/Lsun = 5.6 and 5.8. The upper boundary, is also where the temperature-dependent S Dor instability strip intersects the bistability jump at about 21,000 K. Due to increased opacity, winds of early-type supergiants are slower and denser on the cool side of the bistability jump, and we postulate that this may trigger optically-thick winds that inhibit quiescent LBVs from residing there. We conduct numerical simulations of radiation-driven winds for a range of temperatures, masses, and velocity laws at log L/Lsun=5.7 to see what effect the bistability jump should have. We find that for relatively low stellar masses the increase in wind density at the bistability jump leads to the formation of a modest to strong pseudo photosphere -- enough to make an early B-type star appear as a yellow hypergiant. Thus, the proposed mechanism will be most relevant for LBVs that are post-red supergiants. Yellow hypergiants like IRC+10420 and rho Cas occupy the same luminosity range as the ``missing'' LBVs, and show apparent temperature variations at constant luminosity. If these yellow hypergiants do eventually become Wolf-Rayet stars, we speculate that they may skip the normal LBV phase, at least as far as their apparent positions on the HR diagram are concerned.Comment: 20 pages, 4 figs, accepted by Ap

    A Study of the X-Ray Emission of Magnetic Cataclysmic Variable Ae Aquarii

    Get PDF
    We report results from analysis of the X-ray observations of AE Aqr, made with Ginga in June 1988 and with ASCA in October 1995. Pulsations are detected clearly with a sinusoidal pulse profile with periods of 33.076±0.00133.076\pm0.001 s (Ginga) and 33.077±0.00333.077\pm0.003 s (ASCA)\@. The pulse amplitude is relatively small and the modulated flux remains nearly constant despite a factor of 3 change in the average flux during the flare. We reproduce the time-averaged spectrum in the 0.4 -- 10 keV energy band by a thermal emission model with a combination of two different temperatures: kT1=0.68−0.02+0.01_1 = 0.68^{+0.01}_{-0.02} keV and kT2=2.9−0.2+0.3_2 = 2.9^{+0.3}_{-0.2} keV\@. There is no significant difference between the quiescent and flare energy spectra, although a hint of spectral hardening is recognized during the flare. We interpret these observational results with a model in which AE Aqr is in a propeller stage. Based on this propeller scenario, we suggest that the X-ray emission is originated from magnetospheric radiation.Comment: 24 pages, 7 Postscript figures, AAS LaTex, To appear in the Nov 1 issue of Ap

    Evolution of Massive Stars Up to the End of Central Oxygen Burning

    Full text link
    We present a detailed study of the evolution of massive stars of masses 15, 20, 25 and 30 \msun assuming solar-like initial chemical composition. The stellar sequences were evolved through the advanced burning phases up to the end of core oxygen burning. We present a careful analysis of the physical characteristics of the stellar models. In particular, we investigate the effect of the still unsettled reaction 12^{12}C(α\alpha,γ\gamma)16^{16}O on the advanced evolution by using recent compilations of this rate. We find that this rate has a significant impact on the evolution not only during the core helium burning phase, but also during the late burning phases, especially the shell carbon-burning. We have also considered the effect of different treatment of convective instability based on the Ledoux criterion in regions of varying molecular weight gradient during the hydrogen and helium burning phases. We compare our results with other investigations whenever available. Finally, our present study constitutes the basis of analyzing the nucleosynthesis processes in massive stars. In particular we will present a detail analysis of the {\it s}-process in a forthcoming paper.Comment: 46 pages, 15 figures. To be published in ApJ vol 611, August 10, 200

    Confronting the Superbubble Model with X-ray Observations of 30 Dor C

    Get PDF
    We present an analysis of XMM-Newton observations of the superbubble 30 Dor C and compare the results with the predictions from the standard wind-blown bubble model. We find that the observed X-ray spectra cannot be fitted satisfactorily with the model alone and that there is evidence for nonthermal X-ray emission, which is particularly important at > 4 keV. The total unabsorbed 0.1-10 keV luminosities of the eastern and western parts of the bubble are ~3 10^36 erg/s and ~5 10^36 erg/s, respectively. The unabsorbed 0.1-10 keV luminosity of the bubble model is 4 10^36 erg/s and so the power-law component contributes between 1/3 and 1/2 to the total unabsorbed luminosity in this energy band. The nature of the hard nonthermal emission is not clear, although recent supernovae in the bubble may be responsible. We expect that about one or two core-collapse supernovae could have occured and are required to explain the enrichment of the hot gas, as evidenced by the overabundance of alpha-elements by a factor of 3, compared to the mean value of 0.5 solar for the interstellar medium in the Large Magellanic Cloud. As in previous studies of various superbubbles, the amount of energy currently present in 30 Dor C is significantly less than the expected energy input from the enclosed massive stars over their lifetime. We speculate that a substantial fraction of the input energy may be radiated in far-infrared by dust grains, which are mixed with the hot gas because of the thermal conduction and/or dynamic mixing.Comment: 25 pages, 4 figures. To appear in The Astrophysical Journal, August 20, 2004 issu

    Gamma rays and neutrinos from the Crab Nebula produced by pulsar accelerated nuclei

    Get PDF
    We investigate the consequences of the acceleration of heavy nuclei (e.g. iron nuclei) by the Crab pulsar. Accelerated nuclei can photodisintegrate in collisions with soft photons produced in the pulsar's outer gap, injecting energetic neutrons which decay either inside or outside the Crab Nebula. The protons from neutron decay inside the nebula are trapped by the Crab Nebula magnetic field, and accumulate inside the nebula producing gamma-rays and neutrinos in collisions with the matter in the nebula. Neutrons decaying outside the Crab Nebula contribute to the Galactic cosmic rays. We compute the expected fluxes of gamma-rays and neutrinos, and find that our model could account for the observed emission at high energies and may be tested by searching for high energy neutrinos with future neutrino telescopes currently in the design stage.Comment: 8 pages, 4 figures, LaTeX uses revtex.sty, submitted to Phys. Rev. Let

    Ten-Micron Observations of Nearby Young Stars

    Get PDF
    (abridged) We present new 10-micron photometry of 21 nearby young stars obtained at the Palomar 5-meter and at the Keck I 10-meter telescopes as part of a program to search for dust in the habitable zone of young stars. Thirteen of the stars are in the F-K spectral type range ("solar analogs"), 4 have B or A spectral types, and 4 have spectral type M. We confirm existing IRAS 12-micron and ground-based 10-micron photometry for 10 of the stars, and present new insight into this spectral regime for the rest. Excess emission at 10 micron is not found in any of the young solar analogs, except for a possible 2.4-sigma detection in the G5V star HD 88638. The G2V star HD 107146, which does not display a 10-micron excess, is identified as a new Vega-like candidate, based on our 10-micron photospheric detection, combined with previously unidentified 60-micron and 100-micron IRAS excesses. Among the early-type stars, a 10-micron excess is detected only in HD 109573A (HR 4796A), confirming prior observations; among the M dwarfs, excesses are confirmed in AA Tau, CD -40 8434, and Hen 3-600A. A previously suggested N band excess in the M3 dwarf CD -33 7795 is shown to be consistent with photospheric emission.Comment: 40 pages, 4 figures, 5 tables. To appear in the January 1, 2004 issue of Ap
    • 

    corecore