We investigate the consequences of the acceleration of heavy nuclei (e.g.
iron nuclei) by the Crab pulsar. Accelerated nuclei can photodisintegrate in
collisions with soft photons produced in the pulsar's outer gap, injecting
energetic neutrons which decay either inside or outside the Crab Nebula. The
protons from neutron decay inside the nebula are trapped by the Crab Nebula
magnetic field, and accumulate inside the nebula producing gamma-rays and
neutrinos in collisions with the matter in the nebula. Neutrons decaying
outside the Crab Nebula contribute to the Galactic cosmic rays. We compute the
expected fluxes of gamma-rays and neutrinos, and find that our model could
account for the observed emission at high energies and may be tested by
searching for high energy neutrinos with future neutrino telescopes currently
in the design stage.Comment: 8 pages, 4 figures, LaTeX uses revtex.sty, submitted to Phys. Rev.
Let