70 research outputs found

    Influence of nuclear structure on sub-barrier hindrance in Ni+Ni fusion

    Get PDF
    Fusion-evaporation cross sections for 64^{64}Ni+64^{64}Ni have been measured down to the 10 nb level. For fusion between two open-shell nuclei, this is the first observation of a maximum in the SS-factor, which signals a strong sub-barrier hindrance. A comparison with the 58^{58}Ni+58^{58}Ni, 58^{58}Ni+60^{60}Ni, and 58^{58}Ni+64^{64}Ni systems indicates a strong dependence of the energy where the hindrance occurs on the stiffness of the interacting nuclei.Comment: Submitted to Phys. Rev. Lett. 4 pages, 3 figure

    Hindrance of Heavy-ion Fusion at Extreme Sub-Barrier Energies in Open-shell Colliding Systems

    Full text link
    The excitation function for the fusion-evaporation reaction 64Ni+100Mo has been measured down to a cross-section of ~5 nb. Extensive coupled-channels calculations have been performed, which cannot reproduce the steep fall-off of the excitation function at extreme sub-barrier energies. Thus, this system exhibits a hindrance for fusion, a phenomenon that has been discovered only recently. In the S-factor representation introduced to quantify the hindrance, a maximum is observed at E_s=120.6 MeV, which corresponds to 90% of the reference energy E_s^ref, a value expected from systematics of closed-shell systems. A systematic analysis of Ni-induced fusion reactions leading to compound nuclei with mass A=100-200 is presented in order to explore a possible dependence of the fusion hindrance on nuclear structure.Comment: 10 pages, 9 figures, Submitted to Phys. Rev.

    Discovery of underground argon with low level of radioactive 39Ar and possible applications to WIMP dark matter detectors

    Full text link
    We report on the first measurement of 39Ar in argon from underground natural gas reservoirs. The gas stored in the US National Helium Reserve was found to contain a low level of 39Ar. The ratio of 39Ar to stable argon was found to be <=4x10-17 (84% C.L.), less than 5% the value in atmospheric argon (39Ar/Ar=8x10-16). The total quantity of argon currently stored in the National Helium Reserve is estimated at 1000 tons. 39Ar represents one of the most important backgrounds in argon detectors for WIMP dark matter searches. The findings reported demonstrate the possibility of constructing large multi-ton argon detectors with low radioactivity suitable for WIMP dark matter searches.Comment: 6 pages, 2 figures, 2 table

    Second-line paclitaxel in non-small cell lung cancer initially treated with cisplatin: a study by the European Lung Cancer Working Party

    Get PDF
    In the context of a phase III trial comparing in advanced non-small cell lung cancer (NSCLC) sequential to conventional administration of cisplatin-based chemotherapy and paclitaxel, we evaluated the activity of paclitaxel as second-line chemotherapy and investigated any relation of its efficacy with the type of failure after cisplatin. Patients received three courses of induction GIP (gemcitabine, ifosfamide, cisplatin). Non-progressing patients were randomised between three further courses of GIP or three courses of paclitaxel. Second-line paclitaxel was given to patients with primary failure (PF) to GIP and to those progressing after randomisation to further GIP (secondary failure or SF). One hundred sixty patients received second-line paclitaxel. Response rates were 7.7% for PF and 11.6% for SF (P=0.42). Median survival times (calculated from paclitaxel start) were 4.1 and 7.1 months for PF and SF (P=0.002). In multivariate analysis, three variables were independently associated with better survival: SF (hazard ratio (HR)=1.55, 95% confidence interval (CI) 1.08–2.22; P=0.02), normal haemoglobin level (HR=1.56, 95% CI 1.08–2.26; P=0.02) and minimal weight loss (HR=1.79, 95% CI 1.26–2.55; P=0.001). Paclitaxel in NSCLC patients, whether given for primary or for SF after cisplatin-based chemotherapy, demonstrates activity similar to other drugs considered active as second-line therapy

    First light of BEaTriX, the new testing facility for the modular X-ray optics of the ATHENA mission

    Get PDF
    Aims: The Beam Expander Testing X-ray facility (BEaTriX) is a unique X-ray apparatus now operated at the Istituto Nazionale di Astrofisica (INAF), Osservatorio Astronomico di Brera (OAB), in Merate, Italy. It has been specifically designed to measure the point spread function (PSF) and the effective area (EA) of the X-ray mirror modules (MMs) of the Advanced Telescope for High-ENergy Astrophysics (ATHENA), based on silicon pore optics (SPO) technology, for verification before integration into the mirror assembly. To this end, BEaTriX generates a broad, uniform, monochromatic, and collimated X-ray beam at 4.51 keV. The beam collimation is better than a few arcseconds, ensuring reliable tests of the ATHENA MMs, in their focus at a 12 m distance. Methods: In BEaTriX, a micro-focus X-ray source with a titanium anode is placed in the focus of a paraboloidal mirror, which generates a parallel beam. A crystal monochromator selects the 4.51 keV line, which is expanded to the final size by a crystal asymmetrically cut with respect to the crystalline planes. An in-house-built Hartmann plate was used to characterize the X-ray beam divergence, observing the deviation of X-ray beams from the nominal positions, on a 12-m-distant CCD camera. After characterization, the BEaTriX beam has the nominal dimensions of 170 mm × 60 mm, with a vertical divergence of 1.65 arcsec and a horizontal divergence varying between 2.7 and 3.45 arcsec, depending on the monochromator setting: either high collimation or high intensity. The flux per area unit varies from 10 to 50 photons/s/cm2 from one configuration to the other. Results: The BEaTriX beam performance was tested using an SPO MM, whose entrance pupil was fully illuminated by the expanded beam, and its focus was directly imaged onto the camera. The first light test returned a PSF and an EA in full agreement with expectations. As of today, the 4.51 keV beamline of BEaTriX is operational and can characterize modular X-ray optics, measuring their PSF and EA with a typical exposure of 30 min. Another beamline at 1.49 keV is under development and will be integrated into the current equipment. We expect BEaTriX to be a crucial facility for the functional test of modular X-ray optics, such as the SPO MMs for ATHENA

    X-ray tests of the ATHENA mirror modules in BEaTriX: from design to reality

    Get PDF
    The BEaTriX (Beam Expander Testing X-ray) facility is now operative at the INAF-Osservatorio Astronomico Brera (Merate, Italy). This facility has been specifically designed and built for the X-ray acceptance tests (PSF and Effective Area) of the ATHENA Silicon Pore Optics (SPO) Mirror Modules (MM). The unique setup creates a parallel, monochromatic, large X-ray beam, that fully illuminates the aperture of the MMs, generating an image at the ATHENA focal length of 12 m. This is made possible by a microfocus X-ray source followed by a chain of optical components (a paraboloidal mirror, 2 channel cut monochromators, and an asymmetric silicon crystal) able to expand the X-ray beam to a 6 cm × 17 cm size with a residual divergence of 1.5 arcsec (vertical) × 2.5 arcsec (horizontal). This paper reports the commissioning of the 4.5 keV beam line, and the first light obtained with a Mirror Module

    Combined inverse and forward numerical modelling for reconstruction of channel evolution and facies distributions in fluvial meander-belt deposits

    No full text
    The sedimentary record of meandering rivers contains a diverse and complex set of lithological heterogeneities, which impact natural resource management. Different methods exist to model such accumulated successions present in the subsurface by integrating knowledge of system evolutionary behaviour and geometries visible on seismic time or stratal slices. With reference to case-study examples, we review, discuss and employ two of these methods: (i) ChaRMigS generates possible scenarios for channel evolution and meander cut-offs by a reverse migration process; (ii) PB-SAND is a forward stratigraphic model which simulates fluvial point-bar geometry and facies distributions from known palaeo-channel geometries. We introduce a workflow to demonstrate how these two methods can be applied in combination to predict fluvial meander-belt facies distributions, using a subsurface dataset on a Pleistocene succession from the Gulf of Thailand where abandoned channels are visible on seismic time slices, but for which bar-accretion geometries and the exact timing of channel abandonment are unclear. Results show the value of a combined modelling approach to automate the stochastic generation of facies distributions constrained by seismic interpretations

    Developments in testing x-ray optics at MPE's PANTER facility

    No full text
    The PANTER X-ray test facility of the Max Planck Institute for Extraterrestrial Physics (MPE) has over 40 years of heritage in testing and calibrating x-ray optics. Having contributed to missions such as XMM-Newton, Chandra, and eROSITA, the facility measures the performance of x-ray optic technologies that will enable future x-ray telescopes to be realised. Over the last year, PANTER has been testing the latest developments in silicon pore optics for ESA’s ATHENA mission, as well as full-shell eROSITA-like optics for the CAS/ESA/MPE Einstein Probe mission. For ATHENA, complete mirror modules for the outer radius of the telescope have been tested. The latest developments in the optics for the mid-radius of the telescope, including the first confocal mirror module, have been measured for performance. The paper will provide an overview of the most recent testing carried out at PANTER, and the alignment and measurement techniques used
    • 

    corecore