18 research outputs found

    Burmese pythons in Florida: A synthesis of biology, impacts, and management tools

    Get PDF
    Burmese pythons (Python molurus bivittatus) are native to southeastern Asia, however, there is an established invasive population inhabiting much of southern Florida throughout the Greater Everglades Ecosystem. Pythons have severely impacted native species and ecosystems in Florida and represent one of the most intractable invasive-species management issues across the globe. The difficulty stems from a unique combination of inaccessible habitat and the cryptic and resilient nature of pythons that thrive in the subtropical environment of southern Florida, rendering them extremely challenging to detect. Here we provide a comprehensive review and synthesis of the science relevant to managing invasive Burmese pythons. We describe existing control tools and review challenges to productive research, identifying key knowledge gaps that would improve future research and decision making for python control. (119 pp

    Enhanced hyporheic exchange flow around woody debris does not increase nitrate reduction in a sandy streambed

    Get PDF
    Anthropogenic nitrogen pollution is a critical problem in freshwaters. Although riverbeds are known to attenuate nitrate, it is not known if large woody debris (LWD) can increase this ecosystem service through enhanced hyporheic exchange and streambed residence time. Over a year, we monitored the surface water and pore water chemistry at 200 points along a ~50m reach of a lowland sandy stream with three natural LWD structures. We directly injected 15N-nitrate at 108 locations within the top 1.5m of the streambed to quantify in situ denitrification, anammox and dissimilatory nitrate reduction to ammonia, which, on average, contributed 85%, 10% and 5% of total nitrate reduction, respectively. Total nitrate reducing activity ranged from 0-16µM h-1 and was highest in the top 30cm of the stream bed. Depth, ambient nitrate and water residence time explained 44% of the observed variation in nitrate reduction; fastest rates were associated with slow flow and shallow depths. In autumn, when the river was in spate, nitrate reduction (in situ and laboratory measures) was enhanced around the LWD compared with non-woody areas, but this was not seen in the spring and summer. Overall, there was no significant effect of LWD on nitrate reduction rates in surrounding streambed sediments, but higher pore water nitrate concentrations and shorter residence times, close to LWD, indicated enhanced delivery of surface water into the streambed under high flow. When hyporheic exchange is too strong, overall nitrate reduction is inhibited due to short flow-paths and associated high oxygen concentrations

    Influence of woody debris on nutrient retention in catastrophically disturbed streams

    No full text
    The role of woody debris in nutrient cycling was investigated in two catastrophically disturbed streams in the Pacific Northwest that had been subjected to large inputs of wood. One study site in each catchment had all woody debris removed (take section), while the debris in the other study site was left intact (leave section). Nitrate, phosphate and chloride (a conservative tracer) were released in each section and nutrient retention was monitored at downstream stations. Phosphate was removed from solution more than nitrate, probably due to the high N : P ratio in the stream water. However, there were no major differences in nutrient retention between the take and leave sections. In contrast, experiments in recirculating chambers showed that woody debris and cobbles exhibited higher nitrate and phosphate uptake per unit surface area than sand/gravel or fine particulate organic matter. The high uptake rates of woody debris and cobbles may be related to their suitability for colonization by heterotrophic microorganisms and algae. Wood may not influence nutrient retention significantly at the reach level because of its low surface area relative to other substrates. However, wood may be very important at small spatial scales because of its high uptake activity

    Evidence of Recent Phosphorus Enrichment in Surface Soils of Taylor Slough and Northeast Everglades National Park

    No full text
    Everglades National Park (ENP) is the last hydrologic unit in the series of impounded marsh units that make up the present-day Everglades. The ENP receives water from upstream Water Conservation Areas via canals and water control structures that are highly regulated for flood control, water supply, wildlife management, concerns about poor water quality and the potential for downstream ecosystem degradation. Recent surveys of surface soils in ENP, designed for random sampling for spatial analysis of soil nutrients, did not sample proximate to inflow structures and thus did not detect increased soil phosphorus associated with these water conveyances. This study specifically addressed these areas in a focused sampling effort at three key inflow points in northeast ENP which revealed elevated soil TP proximate to inflows. Two transects extending down Shark River Slough and one down Taylor Slough (a natural watershed of particular ecological value) were found to have soil TP levels in excess of 500 mg kg−1—a threshold above which P enrichment is indicated. These findings suggest the negative impact of elevated water (P) from surface flows and support the assertion that significant soil TP enrichment is occurring in Taylor Slough and other areas of northeastern ENP
    corecore