636 research outputs found
Separately contacted electron-hole double layer in a GaAs/AlxGa1âxAs heterostructure
We describe a method for creating closely spaced parallel two-dimensional electron and hole gases confined in 200 Ă
GaAs wells separated by a 200 Ă
wide AlxGa1âxAs barrier. Low-temperature ohmic contacts are made to both the electrons and holes, whose densities are individually adjustable between 10^(10)/cm^2 to greater than 10^(11)/cm^2
Breakdown of the Two-Step Model in K-Shell Photoemission and Subsequent Decay Probed by the Molecular-Frame Photoelectron Angular Distributions of CO_2
We report results of measurements and of Hartree-Fock level calculations of molecular-frame photoelectron angular distributions (MFPADs) for C 1s photoemission from CO2. The agreement between the measured and calculated MFPADs is on average reasonable. The measured MFPADs display a weak but definite asymmetry with respect to the O+ and CO+ fragment ions at certain energies, providing evidence for an overlap of gerade and ungerade final ionic states giving rise to a partial breakdown of the two-step model of core-level photoionization and its subsequent Auger decay
Excitonic instability and electric-field-induced phase transition towards a two dimensional exciton condensate
We present an InAs-GaSb-based system in which the electric-field tunability
of its 2D energy gap implies a transition towards a thermodynamically stable
excitonic condensed phase. Detailed calculations show a 3 meV BCS-like gap
appearing in a second-order phase transition with electric field. We find this
transition to be very sharp, solely due to exchange interaction, and so, the
exciton binding energy is greatly renormalized even at small condensate
densities. This density gradually increases with external field, thus enabling
the direct probe of the Bose-Einstein to BCS crossover.Comment: LaTex, 11 pages, 3 ps figures, To appear in PR
Interaction potential between dynamic dipoles: polarized excitons in strong magnetic fields
The interaction potential of a two-dimensional system of excitons with
spatially separated electron-hole layers is considered in the strong magnetic
field limit. The excitons are assumed to have free dynamics in the -
plane, while being constrained or `polarized' in the direction. The model
simulates semiconductor double layer systems under strong magnetic field normal
to the layers. The {\em residual} interaction between excitons exhibits
interesting features, arising from the coupling of the center-of-mass and
internal degrees of freedom of the exciton in the magnetic field. This coupling
induces a dynamical dipole moment proportional to the center-of-mass magnetic
moment of the exciton. We show the explicit dependence of the inter-exciton
potential matrix elements, and discuss the underlying physics. The unusual
features of the interaction potential would be reflected in the collective
response and non-equilibrium properties of such system.Comment: REVTEX - 11 pages - 1 fi
Magnetoresistance through a single molecule
The use of single molecules to design electronic devices is an extremely
challenging and fundamentally different approach to further downsizing
electronic circuits. Two-terminal molecular devices such as diodes were first
predicted [1] and, more recently, measured experimentally [2]. The addition of
a gate then enabled the study of molecular transistors [3-5]. In general terms,
in order to increase data processing capabilities, one may not only consider
the electron's charge but also its spin [6,7]. This concept has been pioneered
in giant magnetoresistance (GMR) junctions that consist of thin metallic films
[8,9]. Spin transport across molecules, i.e. Molecular Spintronics remains,
however, a challenging endeavor. As an important first step in this field, we
have performed an experimental and theoretical study on spin transport across a
molecular GMR junction consisting of two ferromagnetic electrodes bridged by a
single hydrogen phthalocyanine (H2Pc) molecule. We observe that even though
H2Pc in itself is nonmagnetic, incorporating it into a molecular junction can
enhance the magnetoresistance by one order of magnitude to 52%.Comment: To appear in Nature Nanotechnology. Present version is the first
submission to Nature Nanotechnology, from May 18th, 201
Bose-Einstein statistics in thermalization and photoluminescence of quantum well excitons
Quasi-equilibrium relaxational thermodynamics is developed to understand
LA-phonon-assisted thermalization of Bose-Einstein distributed excitons in
quantum wells. We study the quantum-statistical effects in the relaxational
dynamics of the effective temperature of excitons . When is less
than the degeneracy temperature , well-developed Bose-Einstein statistics
of quantum well excitons leads to nonexponential and density-dependent
thermalization. At low bath temperatures the thermalization of
quantum-statistically degenerate excitons effectively slows down and . We also analyze the optical decay of Bose-Einstein
distributed excitons in perfect quantum wells and show how nonclassical
statistics influences the effective lifetime . In particular,
of a strongly degenerate gas of excitons is given by ,
where is the intrinsic radiative lifetime of quasi-two-dimensional
excitons. Kinetics of resonant photoluminescence of quantum well excitons
during their thermalization is studied within the thermodynamic approach and
taking into account Bose-Einstein statistics. We find density-dependent
photoluminescence dynamics of statistically degenerate excitons. Numerical
modeling of the thermalization and photoluminescence kinetics of
quasi-two-dimensional excitons are given for GaAs/AlGaAs quantum wells.Comment: 19 pages, 9 figures. Phys. Rev. B (accepted for publication
- âŠ