286 research outputs found

    Exact sampling from non-attractive distributions using summary states

    Full text link
    Propp and Wilson's method of coupling from the past allows one to efficiently generate exact samples from attractive statistical distributions (e.g., the ferromagnetic Ising model). This method may be generalized to non-attractive distributions by the use of summary states, as first described by Huber. Using this method, we present exact samples from a frustrated antiferromagnetic triangular Ising model and the antiferromagnetic q=3 Potts model. We discuss the advantages and limitations of the method of summary states for practical sampling, paying particular attention to the slowing down of the algorithm at low temperature. In particular, we show that such a slowing down can occur in the absence of a physical phase transition.Comment: 5 pages, 6 EPS figures, REVTeX; additional information at http://wol.ra.phy.cam.ac.uk/mackay/exac

    Potts-Percolation-Gauss Model of a Solid

    Full text link
    We study a statistical mechanics model of a solid. Neighboring atoms are connected by Hookian springs. If the energy is larger than a threshold the "spring" is more likely to fail, while if the energy is lower than the threshold the spring is more likely to be alive. The phase diagram and thermodynamic quantities, such as free energy, numbers of bonds and clusters, and their fluctuations, are determined using renormalization-group and Monte-Carlo techniques.Comment: 10 pages, 12 figure

    Dynamic Critical Behavior of the Chayes-Machta Algorithm for the Random-Cluster Model. I. Two Dimensions

    Full text link
    We study, via Monte Carlo simulation, the dynamic critical behavior of the Chayes-Machta dynamics for the Fortuin-Kasteleyn random-cluster model, which generalizes the Swendsen-Wang dynamics for the q-state Potts ferromagnet to non-integer q \ge 1. We consider spatial dimension d=2 and 1.25 \le q \le 4 in steps of 0.25, on lattices up to 1024^2, and obtain estimates for the dynamic critical exponent z_{CM}. We present evidence that when 1 \le q \lesssim 1.95 the Ossola-Sokal conjecture z_{CM} \ge \beta/\nu is violated, though we also present plausible fits compatible with this conjecture. We show that the Li-Sokal bound z_{CM} \ge \alpha/\nu is close to being sharp over the entire range 1 \le q \le 4, but is probably non-sharp by a power. As a byproduct of our work, we also obtain evidence concerning the corrections to scaling in static observables.Comment: LaTeX2e, 75 pages including 26 Postscript figure

    Microcanonical cluster algorithms

    Full text link
    I propose a numerical simulation algorithm for statistical systems which combines a microcanonical transfer of energy with global changes in clusters of spins. The advantages of the cluster approach near a critical point augment the speed increases associated with multi-spin coding in the microcanonical approach. The method also provides a limited ability to tune the average cluster size.Comment: 10 page

    Mean Field Behavior of Cluster Dynamics

    Full text link
    The dynamic behavior of cluster algorithms is analyzed in the classical mean field limit. Rigorous analytical results below TcT_c establish that the dynamic exponent has the value zsw=1z_{sw}=1 for the Swendsen-Wang algorithm and zuw=0z_{uw}=0 for the Wolff algorithm. An efficient Monte Carlo implementation is introduced, adapted for using these algorithms for fully connected graphs. Extensive simulations both above and below TcT_c demonstrate scaling and evaluate the finite-size scaling function by means of a rather impressive collapse of the data.Comment: Revtex, 9 pages with 7 figure

    Families of Graphs with W_r({G},q) Functions That Are Nonanalytic at 1/q=0

    Full text link
    Denoting P(G,q)P(G,q) as the chromatic polynomial for coloring an nn-vertex graph GG with qq colors, and considering the limiting function W({G},q)=lim⁡n→∞P(G,q)1/nW(\{G\},q) = \lim_{n \to \infty}P(G,q)^{1/n}, a fundamental question in graph theory is the following: is Wr({G},q)=q−1W({G},q)W_r(\{G\},q) = q^{-1}W(\{G\},q) analytic or not at the origin of the 1/q1/q plane? (where the complex generalization of qq is assumed). This question is also relevant in statistical mechanics because W({G},q)=exp⁡(S0/kB)W(\{G\},q)=\exp(S_0/k_B), where S0S_0 is the ground state entropy of the qq-state Potts antiferromagnet on the lattice graph {G}\{G\}, and the analyticity of Wr({G},q)W_r(\{G\},q) at 1/q=01/q=0 is necessary for the large-qq series expansions of Wr({G},q)W_r(\{G\},q). Although WrW_r is analytic at 1/q=01/q=0 for many {G}\{G\}, there are some {G}\{G\} for which it is not; for these, WrW_r has no large-qq series expansion. It is important to understand the reason for this nonanalyticity. Here we give a general condition that determines whether or not a particular Wr({G},q)W_r(\{G\},q) is analytic at 1/q=01/q=0 and explains the nonanalyticity where it occurs. We also construct infinite families of graphs with WrW_r functions that are non-analytic at 1/q=01/q=0 and investigate the properties of these functions. Our results are consistent with the conjecture that a sufficient condition for Wr({G},q)W_r(\{G\},q) to be analytic at 1/q=01/q=0 is that {G}\{G\} is a regular lattice graph Λ\Lambda. (This is known not to be a necessary condition).Comment: 22 pages, Revtex, 4 encapsulated postscript figures, to appear in Phys. Rev.

    A Swendsen-Wang update algorithm for the Symanzik improved sigma model

    Get PDF
    We study a generalization of Swendsen-Wang algorithm suited for Potts models with next-next-neighborhood interactions. Using the embedding technique proposed by Wolff we test it on the Symanzik improved bidimensional non-linear σ\sigma model. For some long range observables we find a little slowing down exponent (z≃0.3z \simeq 0.3) that we interpret as an effect of the partial frustration of the induced spin model.Comment: Self extracting archive fil

    Combination of improved multibondic method and the Wang-Landau method

    Full text link
    We propose a method for Monte Carlo simulation of statistical physical models with discretized energy. The method is based on several ideas including the cluster algorithm, the multicanonical Monte Carlo method and its acceleration proposed recently by Wang and Landau. As in the multibondic ensemble method proposed by Janke and Kappler, the present algorithm performs a random walk in the space of the bond population to yield the state density as a function of the bond number. A test on the Ising model shows that the number of Monte Carlo sweeps required of the present method for obtaining the density of state with a given accuracy is proportional to the system size, whereas it is proportional to the system size squared for other conventional methods. In addition, the new method shows a better performance than the original Wang-Landau method in measurement of physical quantities.Comment: 12 pages, 3 figure

    Crossover from Isotropic to Directed Percolation

    Full text link
    Directed percolation is one of the generic universality classes for dynamic processes. We study the crossover from isotropic to directed percolation by representing the combined problem as a random cluster model, with a parameter rr controlling the spontaneous birth of new forest fires. We obtain the exact crossover exponent yDP=yT−1y_{DP}=y_T-1 at r=1r=1 using Coulomb gas methods in 2D. Isotropic percolation is stable, as is confirmed by numerical finite-size scaling results. For D≄3D \geq 3, the stability seems to change. An intuitive argument, however, suggests that directed percolation at r=0r=0 is unstable and that the scaling properties of forest fires at intermediate values of rr are in the same universality class as isotropic percolation, not only in 2D, but in all dimensions.Comment: 4 pages, REVTeX, 4 epsf-emedded postscript figure
    • 

    corecore