186 research outputs found

    Coherent acoustic vibration of metal nanoshells

    Full text link
    Using time-resolved pump-probe spectroscopy we have performed the first investigation of the vibrational modes of gold nanoshells. The fundamental isotropic mode launched by a femtosecond pump pulse manifests itself in a pronounced time-domain modulation of the differential transmission probed at the frequency of nanoshell surface plasmon resonance. The modulation amplitude is significantly stronger and the period is longer than in a gold nanoparticle of the same overall size, in agreement with theoretical calculations. This distinct acoustical signature of nanoshells provides a new and efficient method for identifying these versatile nanostructures and for studying their mechanical and structural properties.Comment: 5 pages, 3 figure

    Spectroscopy of vibrational modes in metal nanoshells

    Full text link
    We study the spectrum of vibrational modes in metal nanoparticles with a dielectric core. Vibrational modes are excited by the rapid heating of the particle lattice that takes place after laser excitation, and can be monitored by means of pump-probe spectroscopy as coherent oscillations of transient optical spectra. In nanoshells, the presence of two metal surfaces results in a substantially different energy spectrum of acoustic vibrations than for solid particles. We calculated the energy spectrum as well as the damping of nanoshell vibrational modes. The oscillator strength of fundamental breathing mode is larger than that in solid nanoparticles. At the same time, in very thin nanoshells, the fundamental mode is overdamped due to instantaneous energy transfer to the surrounding medium

    Nonequilibrium Electron Interactions in Metal Films

    Full text link
    Ultrafast relaxation dynamics of an athermal electron distribution is investigated in silver films using a femtosecond pump-probe technique with 18 fs pulses in off-resonant conditions. The results yield evidence for an increase with time of the electron-gas energy loss rate to the lattice and of the free electron damping during the early stages of the electron-gas thermalization. These effects are attributed to transient alterations of the electron average scattering processes due to the athermal nature of the electron gas, in agreement with numerical simulations

    Spontaneous Magnetization and Electron Momentum Density in 3D Quantum Dots

    Full text link
    We discuss an exactly solvable model Hamiltonian for describing the interacting electron gas in a quantum dot. Results for a spherical square well confining potential are presented. The ground state is found to exhibit striking oscillations in spin polarization with dot radius at a fixed electron density. These oscillations are shown to induce characteristic signatures in the momentum density of the electron gas, providing a novel route for direct experimental observation of the dot magnetization via spectroscopies sensitive to the electron momentum density.Comment: 5 pages (Revtex4), 4 (eps) figure

    Excitonic optical transitions characterized by Raman excitation profiles in single-walled carbon nanotubes

    Get PDF
    We examine the excitonic nature of the E33 optical transition of the individual free-standing index-identified (23, 7) single-walled carbon nanotube by means of the measurements of its radial-breathing-mode and G-mode Raman excitation profiles. We confirm that it is impossible to determine unambiguously the nature of its E33 optical transition (excitonic vs band to band) based only on the excitation profiles. Nevertheless, by combining Raman scattering, Rayleigh scattering, and optical absorption measurements on strictly the same individual (23, 7) single-walled carbon nanotube, we show that the absorption, Rayleigh spectra, and Raman excitation profiles of the longitudinal and transverse G modes are best fitted by considering the nature of the E33 transition as excitonic. The fit of the three sets of data gives close values of the transition energy E33 and damping parameter G33. This comparison shows that the fit of the Raman excitation profiles provides with good accuracy the energy and damping parameter of the excitonic optical transitions in single-walled carbon nanotubes

    Size-dependent Correlation Effects in Ultrafast Optical Dynamics of Metal Nanoparticles

    Full text link
    We study the role of collective surface excitations in the electron relaxation in small metal particles. We show that the dynamically screened electron-electron interaction in a nanoparticle contains a size-dependent correction induced by the surface. This leads to new channels of quasiparticle scattering accompanied by the emission of surface collective excitations. We calculate the energy and temperature dependence of the corresponding rates, which depend strongly on the nanoparticle size. We show that the surface-plasmon-mediated scattering rate of a conduction electron increases with energy, in contrast to that mediated by a bulk plasmon. In noble-metal particles, we find that the dipole collective excitations (surface plasmons) mediate a resonant scattering of d-holes to the conduction band. We study the role of the latter effect in the ultrafast optical dynamics of small nanoparticles and show that, with decreasing nanoparticle size, it leads to a drastic change in the differential absorption lineshape and a strong frequency dependence of the relaxation near the surface plasmon resonance. The experimental implications of our results in ultrafast pump-probe spectroscopy are also discussed.Comment: 29 pages including 6 figure

    Plasmonic nature of van der Waals forces between nanoparticles

    Full text link
    We propose a new approach to calculate van der Waals forces between nanoparticles where the van der Waals energy can be reduced to the energy of elementary surface plasmon oscillations in nanoparticles. The general theory is applied to describe the interaction between 2 metallic nanoparticles and between a nanoparticle and a perfectly conducting plane. Our results could be used to prove experimentally the existence of plasmonic molecules and to elaborate new control mechanisms for the adherence of nanoparticles between each other or onto surfaces.Comment: 4 pages 5 figure

    Ultrafast optical nonlinear properties of metal nanoparticles

    No full text
    no abstrac

    Ultrafast electron interactions in metal clusters

    Get PDF
    International audienceno abstrac

    Ultrafast optical nonlinear properties of metal nanoparticles

    No full text
    no abstrac
    • …
    corecore