27,850 research outputs found

    In-flight transition measurement on a 10 deg cone at Mach numbers from 0.5 to 2.0

    Get PDF
    Boundary layer transition measurements were made in flight on a 10 deg transition cone tested previously in 23 wind tunnels. The cone was mounted on the nose of an F-15 aircraft and flown at Mach numbers room 0.5 to 2.0 and altitudes from 1500 meters (5000 feet) to 15,000 meters (50,000 feet), overlapping the Mach number/Reynolds number envelope of the wind tunnel tests. Transition was detected using a traversing pitot probe in contact with the surface. Data were obtained near zero cone incidence and adiabatic wall temperature. Transition Reynolds number was found to be a function of Mach number and of the ratio of wall temperature to adiabatic all temperature. Microphones mounted flush with the cone surface measured free-stream disturbances imposed on the laminar boundary layer and identified Tollmien-Schlichting waves as the probable cause of transition. Transition Reynolds number also correlated with the disturbance levels as measured by the cone surface microphones under a laminar boundary layer as well as the free-stream impact

    Cohomology for Anyone

    Full text link
    Crystallography has proven a rich source of ideas over several centuries. Among the many ways of looking at space groups, N. David Mermin has pioneered the Fourier-space approach. Recently, we have supplemented this approach with methods borrowed from algebraic topology. We now show what topology, which studies global properties of manifolds, has to do with crystallography. No mathematics is assumed beyond what the typical physics or crystallography student will have seen of group theory; in particular, the reader need not have any prior exposure to topology or to cohomology of groups.Comment: 21 pages + figures, bibliography, Mathematica code homology.

    A randomized controlled pilot trial of classroom-based mindfulness meditation compared to an active control condition in sixth-grade children

    Get PDF
    The current study is a pilot trial to examine the effects of a nonelective, classroom-based, teacher-implemented, mindfulness meditation intervention on standard clinical measures of mental health and affect in middle school children. A total of 101 healthy sixth-grade students (55 boys, 46 girls) were randomized to either an Asian history course with daily mindfulness meditation practice (intervention group) or an African history course with a matched experiential activity (active control group). Self-reported measures included the Youth Self Report (YSR), a modified Spielberger State-Trait Anxiety Inventory, and the Cognitive and Affective Mindfulness Measure –Revised. Both groups decreased significantly on clinical syndrome subscales and affect but did not differ in the extent of their improvements. Meditators were significantly less likely to develop suicidal ideation or thoughts of self-harm than controls. These results suggest that mindfulness training may yield both unique and non-specific benefits that are shared by other novel activities

    Scattering length of Andreev reflection from quantized vortices in 3^3He-BB

    Get PDF
    Andreev reflection of thermal quasiparticles from quantized vortices is an important technique to visualize quantum turbulence in low temperature 3^3He-BB. We revisit a problem of Andreev reflection from the isolated, rectilinear vortex line. For quasiparticle excitations whose impact parameters, defined as distances of the closest approach to the vortex core, do not exceed some arbitrary value, bb, we calculate exactly the reflected fraction of the total flux of excitations incident upon the vortex in the direction orthogonal to the vortex line. We then define and calculate exactly, as a function of bb, the scattering length, that is the scattering cross-section per unit length of the vortex line. We also define and calculate the scattering lengths for the flux of energy carried by thermal excitations, and for the net energy flux resulting from a (small) temperature gradient, and analyze the dependence of these scattering lengths on temperature.Comment: 8 pages, 4 figure

    Cross-sections of Andreev scattering by quantized vortex rings in 3He-B

    Full text link
    We studied numerically the Andreev scattering cross-sections of three-dimensional isolated quantized vortex rings in superfluid 3He-B at ultra-low temperatures. We calculated the dependence of the cross-section on the ring's size and on the angle between the beam of incident thermal quasiparticle excitations and the direction of the ring's motion. We also introduced, and investigated numerically, the cross-section averaged over all possible orientations of the vortex ring; such a cross-section may be particularly relevant for the analysis of experimental data. We also analyzed the role of screening effects for Andreev reflection of quasiparticles by systems of vortex rings. Using the results obtained for isolated rings we found that the screening factor for a system of unlinked rings depends strongly on the average radius of the vortex ring, and that the screening effects increase with decreasing the rings' size.Comment: 11 pages, 8 figures ; submitted to Physical Review

    Visualizing Pure Quantum Turbulence in Superfluid 3^{3}He: Andreev Reflection and its Spectral Properties

    Get PDF
    Superfluid 3^3He-B in the zero-temperature limit offers a unique means of studying quantum turbulence by the Andreev reflection of quasiparticle excitations by the vortex flow fields. We validate the experimental visualization of turbulence in 3^3He-B by showing the relation between the vortex-line density and the Andreev reflectance of the vortex tangle in the first simulations of the Andreev reflectance by a realistic 3D vortex tangle, and comparing the results with the first experimental measurements able to probe quantum turbulence on length scales smaller than the inter-vortex separation.Comment: 5 pages, 4 figures, and Supplemental Material (2 pages, 2 figures

    Trapped ghosts: a new class of wormholes

    Get PDF
    We construct examples of static, spherically symmetric wormhole solutions in general relativity with a minimally coupled scalar field ϕ\phi whose kinetic energy is negative in a restricted region of space near the throat (of arbitrary size) and positive far from it. Thus in such configurations a "ghost" is trapped in the strong-field region, which may in principle explain why no ghosts are observed under usual conditions. Some properties of general wormhole models with the ϕ\phi field are revealed: it is shown that (i) trapped-ghost wormholes are only possible with nonzero potentials V(ϕ)V(\phi); (ii) in twice asymptotically flat wormholes, a nontrivial potential V(ϕ)V(\phi) has an alternate sign, and (iii) a twice asymptotically flat wormhole which is mirror-symmetric with respect to its throat has necessarily a zero Schwarzschild mass at both asymptotics.Comment: 4.2 pages, 4 figures. Version to appear in CQ

    A new correlator in quantum spin chains

    Full text link
    We propose a new correlator in one-dimensional quantum spin chains, the ss-Emptiness Formation Probability (ss-EFP). This is a natural generalization of the Emptiness Formation Probability (EFP), which is the probability that the first nn spins of the chain are all aligned downwards. In the ss-EFP we let the spins in question be separated by ss sites. The usual EFP corresponds to the special case when s=1s=1, and taking s>1s>1 allows us to quantify non-local correlations. We express the ss-EFP for the anisotropic XY model in a transverse magnetic field, a system with both critical and non-critical regimes, in terms of a Toeplitz determinant. For the isotropic XY model we find that the magnetic field induces an interesting length scale.Comment: 6 pages, 1 figur

    Pearson's random walk in the space of the CMB phases: evidence for parity asymmetry

    Full text link
    The temperature fluctuations of the Cosmic Microwave Background (CMB) are supposed to be distributed randomly in both magnitude and phase, following to the simplest model of inflation. In this paper, we look at the odd and even multipoles of the spherical harmonic decomposition of the CMB, and the different characteristics of these, giving rise to a parity asymmetry. We compare the even and odd multipoles in the CMB power spectrum, and also the even and odd mean angles. We find for the multipoles of the power spectrum, that there is power excess in odd multipoles, compared to even ones, meaning that we have a parity asymmetry. Further, for the phases, we present a random walk for the mean angles, and find a significant separation for even/odd mean angles, especially so for galactic coordinates. This is further tested and confirmed with a directional parity test, comparing the parity asymmetry in galactic and ecliptic coordinates.Comment: Accepted for publication in Phys. Rev. D, 10 pages, 10 figures, 1 table. Some typographical errors corrected, and further references adde

    IRAS versus POTENT Density Fields on Large Scales: Biasing and Omega

    Get PDF
    The galaxy density field as extracted from the IRAS 1.2 Jy redshift survey is compared to the mass density field as reconstructed by the POTENT method from the Mark III catalog of peculiar velocities. The reconstruction is done with Gaussian smoothing of radius 12 h^{-1}Mpc, and the comparison is carried out within volumes of effective radii 31-46 h^{-1}Mpc, containing approximately 10-26 independent samples. Random and systematic errors are estimated from multiple realizations of mock catalogs drawn from a simulation that mimics the observed density field in the local universe. The relationship between the two density fields is found to be consistent with gravitational instability theory in the mildly nonlinear regime and a linear biasing relation between galaxies and mass. We measure beta = Omega^{0.6}/b_I = 0.89 \pm 0.12 within a volume of effective radius 40 h^{-1}Mpc, where b_I is the IRAS galaxy biasing parameter at 12 h^{-1}Mpc. This result is only weakly dependent on the comparison volume, suggesting that cosmic scatter is no greater than \pm 0.1. These data are thus consistent with Omega=1 and b_I\approx 1. If b_I>0.75, as theoretical models of biasing indicate, then Omega>0.33 at 95% confidence. A comparison with other estimates of beta suggests scale-dependence in the biasing relation for IRAS galaxies.Comment: 35 pages including 10 figures, AAS Latex, Submitted to The Astrophysical Journa
    corecore