1,451 research outputs found
Those wonderful elastic waves
We consider in a simple and general way elastic waves in isotropic and
anisotropic media, their polarization, speeds, reflection from interfaces with
mode conversion, and surface waves. Reflection of quasi transverse waves in
anisotropic media from a free surface is shown to be characterized by three
critical angles.Comment: 11 Figures 26 page
Observations of diurnal coastal-trapped waves with a thermocline-intensified velocity field
Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(7), (2019): 1973-1994, doi: 10.1175/JPO-D-18-0194.1.Using 18 days of field observations, we investigate the diurnal (D1) frequency wave dynamics on the Tasmanian eastern continental shelf. At this latitude, the D1 frequency is subinertial and separable from the highly energetic near-inertial motion. We use a linear coastal-trapped wave (CTW) solution with the observed background current, stratification, and shelf bathymetry to determine the modal structure of the first three resonant CTWs. We associate the observed D1 velocity with a superimposed mode-zero and mode-one CTW, with mode one dominating mode zero. Both the observed and mode-one D1 velocity was intensified near the thermocline, with stronger velocities occurring when the thermocline stratification was stronger and/or the thermocline was deeper (up to the shelfbreak depth). The CTW modal structure and amplitude varied with the background stratification and alongshore current, with no spring–neap relationship evident for the observed 18 days. Within the surface and bottom Ekman layers on the shelf, the observed velocity phase changed in the cross-shelf and/or vertical directions, inconsistent with an alongshore propagating CTW. In the near-surface and near-bottom regions, the linear CTW solution also did not match the observed velocity, particularly within the bottom Ekman layer. Boundary layer processes were likely causing this observed inconsistency with linear CTW theory. As linear CTW solutions have an idealized representation of boundary dynamics, they should be cautiously applied on the shelf.An Australian Research Council Discovery Project (DP 140101322), and a UWA Research Collaboration Award funded this work. T. L. Schlosser acknowledges the support of an Australian Government Research Training Program (RTP) Scholarship. We thank the crew, volunteers and scientists who aided in the field data collection aboard the R/V Revelle, which was funded by the National Science Foundation (OCE-1129763). The continental slope moorings, T4 (M32) and T3 (M44), were also funded by the National Science Foundation (OCE-1129763) and were conceived, planned, and executed by Matthew Alford, Jennifer Mackinnon, Jonathan Nash, Harper Simmons, and Gunnar Voet. We also thank Harper Simmons for the combined R/V Revelle multibeam and Geoscience Australia bathymetry used in this study. We thank the two anonymous reviewers whose comments improved this work.2020-01-1
Dimension in a Radiative Stellar Atmosphere
Dimensional scales are examined in an extended 3+1 Vaidya atmosphere
surrounding a Schwarzschild source. At one scale, the Vaidya null fluid
vanishes and the spacetime contains only a single spherical 2-surface. Both of
these behaviors can be addressed by including higher dimensions in the
spacetime metric.Comment: to appear in Gen. Rel. Gra
Effect of Calving Season and Wintering System on Cow Performance
Four years of data from three different calving seasons and two different cow wintering systems were evaluated utilizing 218 cows/year. Cows calved in spring, summer, or fall and were wintered on native Sandhills range or cornstalks. Calving season affected cow body weight (BW) and body condition score (BCS) throughout the production year; calving in the fall reduced number of calves weaned per cow. No differences were observed between cows wintered on Sandhills range and those wintered on cornstalks
New measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission
Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both
calculable from first principles using various theoretical approaches and of
interest for the understanding of a wide range of questions in many body
physics. Unfortunately, the pair correlation function inferred from
neutron scattering measurements of the differential cross section from different measurements reported in the literature are
inconsistent. We have measured the energy dependence of the total cross section
and the scattering cross section for slow neutrons with energies between
0.43~meV and 16.1~meV on liquid hydrogen at 15.6~K (which is dominated by the
parahydrogen component) using neutron transmission measurements on the hydrogen
target of the NPDGamma collaboration at the Spallation Neutron Source at Oak
Ridge National Laboratory. The relationship between the neutron transmission
measurement we perform and the total cross section is unambiguous, and the
energy range accesses length scales where the pair correlation function is
rapidly varying. At 1~meV our measurement is a factor of 3 below the data from
previous work. We present evidence that these previous measurements of the
hydrogen cross section, which assumed that the equilibrium value for the ratio
of orthohydrogen and parahydrogen has been reached in the target liquid, were
in fact contaminated with an extra non-equilibrium component of orthohydrogen.
Liquid parahydrogen is also a widely-used neutron moderator medium, and an
accurate knowledge of its slow neutron cross section is essential for the
design and optimization of intense slow neutron sources. We describe our
measurements and compare them with previous work.Comment: Edited for submission to Physical Review
Cylindrical thin-shell wormholes
A general formalism for the dynamics of non rotating cylindrical thin-shell
wormholes is developed. The time evolution of the throat is explicitly obtained
for thin-shell wormholes whose metric has the form associated to local cosmic
strings. It is found that the throat collapses to zero radius, remains static
or expands forever, depending only on the sign of its initial velocity.Comment: 10 page
First Observation of -odd Asymmetry in Polarized Neutron Capture on Hydrogen
We report the first observation of the parity-violating 2.2 MeV gamma-ray
asymmetry in neutron-proton capture using polarized cold
neutrons incident on a liquid parahydrogen target at the Spallation Neutron
Source at Oak Ridge National Laboratory. isolates the , \mbox{} component of the weak
nucleon-nucleon interaction, which is dominated by pion exchange and can be
directly related to a single coupling constant in either the DDH meson exchange
model or pionless EFT. We measured , which implies a DDH weak coupling of
and a pionless
EFT constant of MeV. We describe the experiment, data
analysis, systematic uncertainties, and the implications of the result.Comment: 6 pages, 5 figure
Thin-shell wormholes in Einstein-Maxwell theory with a Gauss-Bonnet term
We study five dimensional thin-shell wormholes in Einstein-Maxwell theory
with a Gauss-Bonnet term. The linearized stability under radial perturbations
and the amount of exotic matter are analyzed as a function of the parameters of
the model. We find that the inclusion of the quadratic correction substantially
widens the range of possible stable configurations, and besides it allows for a
reduction of the exotic matter required to construct the wormholes.Comment: 13 pages, 6 figures; v2: minor changes and new references added.
Accepted for publication in General Relativity and Gravitatio
The PHIN photoinjector for the CTF3 Drive beam
A new photoinjector for the CTF3 drive beam has been designed and is now being constructed by a collaboration among LAL, CCLRC and CERN within PHIN, the second Joint Research Activity of CARE. The photoinjector will provide a train of 2332 pulses at 1.5 GHz with a complex timing structure (sub-trains of 212 pulses spaced from one another by 333 ps or 999 ps) to allow the frequency multiplication scheme, which is one of the features of CLIC, to be tested in CTF3. Each pulse of 2.33 nC will be emitted by a Cs2Te photocathode deposited by a co-evaporation process to allow high quantum efficiency in operation (>3% for a minimum of 40 h). The 3 GHz, 2 1/2 cell RF gun has a 2 port coupler to minimize emittance growth due to asymmetric fields, racetrack profile of the irises and two solenoids to keep the emittance at the output below 20 p.mm.mrad. The laser has to survive very high average powers both within the pulse train (15 kW) and overall (200 W before pulse slicing). Challenging targets are also for amplitude stability (<0.25% rms) and time jitter from pulse to pulse (<1ps rms). An offline test in a dedicated line is foreseen at CERN in 2007
- …