159 research outputs found

    Near-threshold high-order harmonic spectroscopy with aligned molecules

    Full text link
    We study high-order harmonic generation in aligned molecules close to the ionization threshold. Two distinct contributions to the harmonic signal are observed, which show very different responses to molecular alignment and ellipticity of the driving field. We perform a classical electron trajectory analysis, taking into account the significant influence of the Coulomb potential on the strong-field-driven electron dynamics. The two contributions are related to primary ionization and excitation processes, offering a deeper understanding of the origin of high harmonics near the ionization threshold. This work shows that high harmonic spectroscopy can be extended to the near-threshold spectral range, which is in general spectroscopically rich.Comment: 4 pages, 4 figure

    Attosecond time-resolved photoelectron holography

    Get PDF
    Ultrafast strong-field physics provides insight into quantum phenomena that evolve on an attosecond time scale, the most fundamental of which is quantum tunneling. The tunneling process initiates a range of strong field phenomena such as high harmonic generation (HHG), laser-induced electron diffraction, double ionization and photoelectron holography—all evolving during a fraction of the optical cycle. Here we apply attosecond photoelectron holography as a method to resolve the temporal properties of the tunneling process. Adding a weak second harmonic (SH) field to a strong fundamental laser field enables us to reconstruct the ionization times of photoelectrons that play a role in the formation of a photoelectron hologram with attosecond precision. We decouple the contributions of the two arms of the hologram and resolve the subtle differences in their ionization times, separated by only a few tens of attoseconds

    Theory of selective excitation in Stimulated Raman Scattering

    Full text link
    A semiclassical model is used to investigate the possibility of selectively exciting one of two closely spaced, uncoupled Raman transitions. The duration of the intense pump pulse that creates the Raman coherence is shorter than the vibrational period of a molecule (impulsive regime of interaction). Pulse shapes are found that provide either enhancement or suppression of particular vibrational excitations.Comment: RevTeX4,10 pages, 5 figures, submitted to Phys.Rev.

    When does an electron exit a tunneling barrier?

    Get PDF
    We probe the dynamics of tunnel ionization via high harmonic generation. We characterize the ionization dynamics in helium atoms, and apply our approach to resolve subtle differences in ionization from different orbitals of a CO 2 molecule

    Observation of coherent transients in ultrashort chirped excitation of an undamped two-level system

    Get PDF
    The effects of Coherent excitation of a two level system with a linearly chirped pulse are studied theoretically and experimentally (in Rb (5s - 5p)) in the low field regime. The Coherent Transients are measured directly on the excited state population on an ultrashort time scale. A sharp step corresponds to the passage through resonance. It is followed by oscillations resulting from interferences between off-resonant and resonant contributions. We finally show the equivalence between this experiment and Fresnel diffraction by a sharp edge.Comment: 4 pages, 4 figures, to appear in PR

    Transform-limited pulses are not optimal for resonant multiphoton transitions

    Full text link
    Maximizing nonlinear light-matter interactions is a primary motive for compressing laser pulses to achieve ultrashort transform limited pulses. Here we show how, by appropriately shaping the pulses, resonant multiphoton transitions can be enhanced significantly beyond the level achieved by maximizing the pulse's peak intensity. We demonstrate the counterintuitive nature of this effect with an experiment in a resonant two-photon absorption, in which, by selectively removing certain spectral bands, the peak intensity of the pulse is reduced by a factor of 40, yet the absorption rate is doubled. Furthermore, by suitably designing the spectral phase of the pulse, we increase the absorption rate by a factor of 7.Comment: 4 pages, 3 figure

    Noise auto-correlation spectroscopy with coherent Raman scattering

    Full text link
    Ultrafast lasers have become one of the most powerful tools in coherent nonlinear optical spectroscopy. Short pulses enable direct observation of fast molecular dynamics, whereas broad spectral bandwidth offers ways of controlling nonlinear optical processes by means of quantum interferences. Special care is usually taken to preserve the coherence of laser pulses as it determines the accuracy of a spectroscopic measurement. Here we present a new approach to coherent Raman spectroscopy based on deliberately introduced noise, which increases the spectral resolution, robustness and efficiency. We probe laser induced molecular vibrations using a broadband laser pulse with intentionally randomized amplitude and phase. The vibrational resonances result in and are identified through the appearance of intensity correlations in the noisy spectrum of coherently scattered photons. Spectral resolution is neither limited by the pulse bandwidth, nor sensitive to the quality of the temporal and spectral profile of the pulses. This is particularly attractive for the applications in microscopy, biological imaging and remote sensing, where dispersion and scattering properties of the medium often undermine the applicability of ultrafast lasers. The proposed method combines the efficiency and resolution of a coherent process with the robustness of incoherent light. As we demonstrate here, it can be implemented by simply destroying the coherence of a laser pulse, and without any elaborate temporal scanning or spectral shaping commonly required by the frequency-resolved spectroscopic methods with ultrashort pulses.Comment: To appear in Nature Physic

    Integrated liquid-core optical fibers --- ultra-efficient nonlinear liquid photonics

    Full text link
    We have developed a novel integrated platform for liquid photonics based on liquid core optical fiber (LCOF). The platform is created by fusion splicing liquid core optical fiber to standard single-mode optical fiber making it fully integrated and practical - a major challenge that has greatly hindered progress in liquid-photonic applications. As an example, we report here the realization of ultralow threshold Raman generation using an integrated CS2 filled LCOF pumped with sub-nanosecond pulses at 1064nm and 532nm. The measured energy threshold for the Stokes generation is ~ 1nJ, about three orders of magnitude lower than previously reported values in the literature for hydrogen gas. The integrated LCOF platform opens up new possibilities for ultralow power nonlinear optics such as efficient white light generation for displays, mid-IR generation, slow light generation, parametric amplification, all-optical switching and wavelength conversion using liquids that have orders of magnitude larger optical nonlinearities compared with silica glass.Comment: 4 pages, 3 figure
    • …
    corecore