1,136 research outputs found

    2D Proactive Uplink Resource Allocation Algorithm for Event Based MTC Applications

    Full text link
    We propose a two dimension (2D) proactive uplink resource allocation (2D-PURA) algorithm that aims to reduce the delay/latency in event-based machine-type communications (MTC) applications. Specifically, when an event of interest occurs at a device, it tends to spread to the neighboring devices. Consequently, when a device has data to send to the base station (BS), its neighbors later are highly likely to transmit. Thus, we propose to cluster devices in the neighborhood around the event, also referred to as the disturbance region, into rings based on the distance from the original event. To reduce the uplink latency, we then proactively allocate resources for these rings. To evaluate the proposed algorithm, we analytically derive the mean uplink delay, the proportion of resource conservation due to successful allocations, and the proportion of uplink resource wastage due to unsuccessful allocations for 2D-PURA algorithm. Numerical results demonstrate that the proposed method can save over 16.5 and 27 percent of mean uplink delay, compared with the 1D algorithm and the standard method, respectively.Comment: 6 pages, 6 figures, Published in 2018 IEEE Wireless Communications and Networking Conference (WCNC

    Frustration Effects in Antiferromagnetic FCC Heisenberg Films

    Full text link
    We study the effects of frustration in an antiferromagnetic film of FCC lattice with Heisenberg spin model including an Ising-like anisotropy. Monte Carlo (MC) simulations have been used to study thermodynamic properties of the film. We show that the presence of the surface reduces the ground state (GS) degeneracy found in the bulk. The GS is shown to depend on the surface in-plane interaction JsJ_s with a critical value at which ordering of type I coexists with ordering of type II. Near this value a reentrant phase is found. Various physical quantities such as layer magnetizations and layer susceptibilities are shown and discussed. The nature of the phase transition is also studied by histogram technique. We have also used the Green's function (GF) method for the quantum counterpart model. The results at low-TT show interesting effects of quantum fluctuations. Results obtained by the GF method at high TT are compared to those of MC simulations. A good agreement is observed.Comment: 11 pages, 19 figures, submitted to J. Phys.: Condensed Matte

    Quantum Monte Carlo study of the transverse-field Ising model on a frustrated checkerboard lattice

    Full text link
    We present the numerical results for low temperature behavior of the transverse-field Ising model on a frustrated checkerboard lattice, with focus on the effect of both quantum and thermal fluctuations. Applying the recently-developed continuous-time quantum Monte Carlo algorithm, we compute the magnetization and susceptibility down to extremely low temperatures while changing the magnitude of both transverse and longitudinal magnetic fields. Several characteristic behaviors are observed, which were not inferred from the previously studied quantum order from disorder at zero temperature, such as a horizontal-type stripe ordering at a substantial longitudinal field and a persistent critical behavior down to low temperature in a weak longitudinal field region.Comment: 6 pages, 5 figures, accepted for publication in J. Phys.: Conf. Se

    GdI_2: A New Ferromagnetic Excitonic Solid?

    Full text link
    The two-dimensional, colossal magnetoresistive system GdI_2 develops an unusual metallic state below its ferromagnetic transition and becomes insulating at low temperatures. It is argued that this geometrically frustrated, correlated poor metal is a possible candidate for a ferromagnetic excitonic liquid. The renormalized Fermi surface supports a further breaking of symmetry to a charge ordered, excitonic solid ground state at lower temperatures via order by disorder mechanism. Several experimental predictions are made to investigate this unique orbitally correlated ground state.Comment: 4 pages, 4 figures, changed Fig. 1 with extended energy scale, added text and references, author list shortene
    • …
    corecore