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Abstract

The Z2-graded Čech cohomology theory is considered in the framework of noncommutative

geometry over complex number field and in particular the homotopy invariance and Morita

invariance are proven. In some special case we deduce an isomorphism between this noncom-

mutative theory and the classical Z2-graded Čech cohomology theory.
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1 Introduction

Let us fix, in this paper, the field of complex numbers as the ground field for algebras, modules,

etc.

The general Čech cohomology presheaf Ȟq for an arbitrary presheaf X on a category C,

Ȟq(X,G) = Ȟq(G)(X) was introduced in [SGA4.2].

The idea of Čech cohomology for noncommutative geometry appeared in [KR], [R]. In this

paper we use this idea to define the corresponding (periodic) Z2-graded Čech theory.

We prove the homotopy invariance and Morita invariance of Čech cohomology in the frame-

work of noncommutative geometry. Our main result is based on a detailed analysis of the

structure of C*-algebras. A crucial observation is the fact that for C*-algebras the category

of *-representations defines exactly the C*-algebra itself, by the well-known Gelfand-Naimark-

Segal Theorem. From this we can deduce the Morita invariance and homotopy invariance of the

Čech cohomology, the same properties of periodic cyclic homology of the C*-algebra. Since our

result is valid not only for C*-algebras, we work in the general context of a noncommutative

algebra over complex numbers.

The paper is organized as follows. Taking the Čech cohomology in place of the de Rham

theory in the periodic cyclic theory of A. Connes, in §2 we define the Z2-graded Čech cohomology

theory. Then in section 3 we prove two important properties of the theory as the homotopy

invariance and Morita invariance. In the last section 4 we deduce also some kind of Connes-

Hochschild-Kostant-Rosenberg theorem. This lets us see a clear relation with the classical case

of commutative algebras and ordinary Čech cohomology theory.

Notations: We follow the notations from [SGA4.2] and [O]

2 Z2-graded Čech cohomology

2.1 Grothendieck topos

The main purpose of this section is to formulate and define the functor of (periodic cyclic)

Z2-graded Čech cohomology. The well-known periodic cyclic homology is based on the cyclic

homology theory of A. Connes, which is an algebraic framework of the Z2-graded de Rham

cohomology theories. In the algebraic context, it was defined by J. Cuntz and D. Quillen in

terms of X -complexes and it has become a new chapter of noncommutative algebraic geometry.

The most general Gronthendieck algebraic geometry is purely based in terms of categories. In

the generic case this turns out to be the algebraic version of the Čech cohomology in place of

de Rham cohomology theories. We follow the work of Orlov [O] in particular to formulate the

theory. The main references are [SGA4.2] and [O].

Many of our results could be obtained in the fields of other characteristics, but we restrict

ourselves to the complex case.
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Let us denote by C a fixed category and Set the category of sets. Any contravariant functor

X from C to Set is called a presheaf of sets and the category of all presheaves of sets on

C is denoted by Ĉ. The category C can be considered as a subcategory of Ĉ, consisting of

representable functors h = hR : C → Set. If R is an object of C, then there is a natural

isomorphism Hom
Ĉ
(hR, X) = X(R). For any object X ∈ Ĉ the category over X is the category

of pairs (R,Φ), where R is an object of C and Φ ∈ X(R), and is denoted by C/X.

Recall that a sieve in the category C is a full subcategory D ⊆ C such that any object of C

for which there exists a morphism from it to some object in D is contained in Obj(D). A sieve

on R is nothing more than a subpresheaf of R in the category Ĉ

A Grothendieck topology T on a category C is defined by giving for each object R in C a set

J(R) of the so-called covering sieves satisfying the following axioms:

(T1) For any object R the maximal sieve C/R is in J(R).

(T2) If T ∈ J(R) and f : S → R a morphism in C, then the induced sieve

f∗(T ) := {U
α

−−−→ S|fα ∈ T}

is in J(S).

(T3) If T ∈ J(R) is a covering sieve and U is a sieve on R such that f ∗(U) ∈ J(S) for all

f : S → R in T , then U ∈ J(R).

A Grothendieck site Φ = (C, T ) is a category C and equipped with a Grothendieck topology T .

It is reasonable to remind the Jacobson topology on the set of all representations of a group

or Zariski topology on algebraic varieties.

For the categories with fiber product, a Grothendieck topology can be given by a Grothendieck

pretopology which is defined by giving for each object R in C a family Cov(R) of morphism to

R such that

(P1) For any family {Rα → R}α∈I in Cov(R) and S → R a morphism of C, the fiber product

family Rα ×R S → S is also in Cov(R).

(P2) If {Rα → R}α∈R is in Cov(R) and {Rβα → Rα}βα∈Jα is in Cov(Rα) for each α ∈ I, then

the total family {Rγ → R}γ∈
‘

α∈I Jα
is in Cov(R).

(P3) The trivial family {idR : R→ R} is in Cov(R).

Any Grothendieck pretopology P on C generates a Grothendieck topology T such that a sieve

is covering in T if and only if it contains some covering family in P .

The topos on the category of functors from a category C to another one D is defined by the

usual rule.
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2.2 The standard cosimplicial complex of a continuous functor

We define in this subsection the Z2-graded Čech cohomology theory. Let us recall the definition

of the Čech cohomology with coefficients in a sheaf M . Let U = (Ui → X)i∈I be a covering

sieve of X in the category C. Suppose that the cover has the property that all fiber product and

pushout diagrams exist, see ([SGA4.2], Exp. 4). Denote A• the associated standard simplicial

complex:

A• : . . .

−→

−→

−→

−→

‘

(i,j,k)∈I3 A(Ui × Uj × Uk)
−→

−→

−→

‘

(i,j)∈I2 A(Ui × Uj)
−→

−→

‘

i∈I A(Ui)

Let us consider again a ringed cite (category) (C, A), Ĉ the topos of presheaves on C, ε : C ↪→ Ĉ

the canonical functor associating to each object X ∈ C the functor hX , presented by X. Define

Hq(hX ,M) = Hq(X,M), see ([SGA4.2], Exp IV, 2.3.1), as derived functor of the projective

limit functor :

Hq(S,M) := Rq lim
←

C/S

M |S

For any A-module M , denote C•(U ,M) := HomA(A•,M) :

C•(U ,M) :
∏

i∈I M(Ui)
→
→

∏

(i,j)∈I2 M(Ui × Uj)
−→
−→
−→

. . .

One defines Hq(U ,M) := Hq(C•(U ,M)). If R is a covering sieve generalized by the family

U then

Hq(U ,M) ∼= Hq(R,M)

and the functor Hq(U , .) commutes with restriction of scalars, see ([SGA4.2], Exp. IV, Propo-

sition 2.3.4).

One defines, ([SGA4.2], Exp. IV, 2.4)

H0(M)(X) := H0(X,M) = M(X),

Hq(M)(X) := Hq(M,M).

For an arbitrary presheaf G of A-module G, the groups H q(R,G) are called the Čech coho-

mology with respect to the covering sieve R, with coefficients in G.

For a sheaf M of A-modules over C, the group

Hq(U ,M) := Hq(U ,H0(M))

is defined as the Čech cohomology group of the sheaf M with respect to the cover U .

One also has

Ȟ0(G)(X) = lim
−→

R↪→X

G(R)
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and therefore

Hq(G)(X) = lim
−→

R↪→X

Hq(R,G)

which is called the presheaf of Čech cohomology

Define

Ȟq(X,G) := Ȟq(G)(X),

one also has

Ȟq(X,G) = lim
−→

U

Hq(U , G).

For a sheaf M of A-modules, one has

Ȟq(X,M) = Ȟq(X,H0(M)), Ȟq(M) = Ȟq(Ȟ0(M)).

The groups Ȟq(X,M) are called the Čech cohomology groups of the sheaf M .

2.3 The periodic cyclic bicomplex

Lemma 2.1 (The action of Zk+1) There is a natural action of the cyclic group Zk+1 on the

Čech cohomology cochain complex C•(U ,M) associated with a covering U .

Proof. The action of the cyclic group Zk+1 is defined a cyclic permutation of indices of U ′s,

i.e.

(λM)(Ui0 × . . .× Uik) := M(Uik × Ui0 × . . .× Uik−1
).

It is also not hard to see that for a covering sieve U = {Uα → X} there is a natural

isomorphism

M(Ui0 × . . .× Uik) ∼= M(Ui0)⊗ . . .⊗M(Uik).

Therefore the Čech cohomology complex becomes the cyclic complex for

lim
→

U

M(U).

�

Corollary 2.2 (Hochschild differentials and Cyclic operations) The well-known Hochschild

differentials b′ and b and Connes cyclic operators λ, N = 1 + λ + . . . + λk, s are well-defined on

Z2-graded Čech cocycles.

Definition 2.3 (Periodic bicomplex) Let (C, A) be a ringed U -cite, Ĉ the topos of sheaves,

M a sheaf of A-modules. Then the bicomplex
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.

.

.

.

.

.

.

.

−b′

x

?

?

?

?

?

b

x

?

?

?

?

?

−b′

x

?

?

?

?

?

. . .
1−λ

−−−−−−→
Q

(i1,i2,i3)∈I3 M(Ui1
× Ui2

× Ui3
)

N
−−−−−−→

Q

(i1,i2,i3)∈I3 M(Ui1
× Ui2

× Ui3
)

1−λ
−−−−−−→ . . .

−b′

x

?

?

?

?

?

b

x

?

?

?

?

?

−b′

x

?

?

?

?

?

. . .
1−λ

−−−−−−→
Q

(i,j)∈I2 M(Ui × Uj)
N

−−−−−−→
Q

(i,j)∈I2 M(Ui × Uj)
1−λ

−−−−−−→ . . .

−b′

x

?

?

?

?

?

b

x

?

?

?

?

?

−b′

x

?

?

?

?

?

. . .
1−λ

−−−−−−→
Q

i∈I M(Ui)
N

−−−−−−→
Q

i∈I M(Ui)
1−λ

−−−−−−→ . . .

is well-defined and is called the (periodic) Čech bicomplex.

Definition 2.4 (The total complex and Z2-graded Čech cohomology) The associated to-

tal complex is defined as

Tot C(U ,M)± :=
∏

i+j=±(mod 2)

Ci,j,

where C i,j :=
∏

(i1,...,ik)∈Ik M(Ui1 × . . .× Uik) and ± = ev (even) or od (odd).

The cohomology of this total complex is called the Z2-graded Čech cohomology of M and

denoted by Z2Ȟ
∗(U ,M) and Z2Ȟ(X,M) := lim−→

U
Z2Ȟ(U ,M). It can also be realized as the

cohomology of the total complex related with the process of passing through direct limits, i.e.

the direct limit bi-complex

.

.

.

.

.

.

.

.

.

−b′

x

?

?

?

?

?

b

x

?

?

?

?

?

−b′

x

?

?

?

?

?

. . .
1−λ

−−−−−−→
Q

(i1,i2,i3)∈I3 lim−→

U

M(Ui1
× Ui2

× Ui3
)

N
−−−−−−→

Q

(i1,i2,i3)∈I3 lim−→

U

M(Ui1
× Ui2

× Ui3
)

1−λ
−−−−−−→ . . .

−b′

x

?

?

?

?

?

b

x

?

?

?

?

?

−b′

x

?

?

?

?

?

. . .
1−λ

−−−−−−→ lim−→

U

Q

(i,j)∈I2 M(Ui × Uj)
N

−−−−−−→ lim−→

U

Q

(i,j)∈I2 M(Ui × Uj)
1−λ

−−−−−−→ . . .

−b′

x

?

?

?

?

?

b

x

?

?

?

?

?

−b′

x

?

?

?

?

?

. . .
1−λ

−−−−−−→ lim−→

U

Q

i∈I M(Ui)
N

−−−−−−→ lim−→

U

Q

i∈I M(Ui)
1−λ

−−−−−−→ . . .

For a C*-algebra A, we define it Z2-graded Čech cohomology Z2Ȟ(A) = Z2Ȟ(A) as the Z2-

graded Čech cohomology of the category of *-representations of A.

Remark 2.5 In the first periodic bi-complex without direct limits, all the horizontal lines are

acylic, but it is in general not the case for the second periodic bi-complex with direct limits.

3 Homotopy invariance and Morita invariance

We prove in this section two main properties of the (periodic cyclic) Z2-graded Čech cohomology

theory: homotopy invariance and Morita invariance, which make the theory easier to compute,

being a generalized homology theory.

6



Definition 3.1 (Chain Homotopy of functors) Let us consider two functors F,G : C → D.

Denote the corresponding chain functors between complexes by {Fn}, {Gn}, where Fn, Gn : Cn →

Dn for complexes
0 −−−→ C0 −−−→ C1 −−−→ C2 −−−→ . . .

F0,G0





y

F1,G1





y

F2,G2





y

0 −−−→ D0 −−−→ D1 −−−→ D2 −−−→ . . .

We say that F and G are chain homotopic if there exist augmentation functors sn : Cn → Dn−1

such that for all n

Fn −Gn = sn ◦ ∂n−1 + ∂n ◦ sn+1.

Lemma 3.2 Two functors F,G : A → B are homotopic if and only if for any covering sieve

U = (Ui → X)i∈I , there exists a chain homotopy of chain complexes

∐

i∈I

A(Ui)
←−
←−

∐

i,j∈I×I

A(Ui ×X Uj)
←−
←−
←−

. . .

and

∐

i∈I

B(Ui)
←−
←−

∐

i,j∈I×I

B(Ui ×X Uj)
←−
←−
←−

. . .

Remark 3.3 In the case of smooth manifolds the chain complex homotopy is realized by inte-

gration of the so-called Cartan homotopy formula for the Lie derivative

Lξ = ı(ξ) ◦ d + d ◦ ı(ξ)

between de Rham complexes.

Lemma 3.4 Let A and B be C*-algebras, and let A (resp. B) be the category of ∗-modules .

Then the categories A and B are homotopic one-to-another if and only if the two algebras A and

B are homotopic.

Proof. Because of the Gelfand-Naimark-Segal theorem, the C*-algebras are exactly defined by

the category of *-representations, the category of *-representations of B ⊗C[0, 1] is isomorphic

to the category of *-representations of B. �

Lemma 3.5 Let A be a C*-algebra and A the category of *-representations (i.e. A-modules) of

A, then

Z2Ȟ
∗(A) ∼= HP∗(A).

Proof. Let us consider affine covering sieve Ui → X = Â = SpecA, the dual object of A. �

Theorem 3.6 (Homotopy Invariance) Let ϕt : A → B, t ∈ I = [0, 1] be a homotopy of

algebras, then

Z2Ȟ
∗(A) ∼= Z2Ȟ

∗(B).
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Proof. Let A (resp. B) be the category of A-modules (resp., B-modules).

Step 1. Change the homotopy by a piecewise-linear homotopy in the space of functors from

the category A to the category B.

Step 2. A piecewise-linear homotopy gives rise to a chain complex homotopy.

Step 3. Two chain complex homotopical functors induce the same isomorphism of Čech

cohomology groups. It is an easy consequence from the results of homological algebra: If Fn

and Gn are chain complex homotopic then the induced morphisms satisfies

F ∗
n −G∗

n = ∂∗
n−1 ◦ s∗n + s∗n+1 ◦ ∂∗

n.

The second summand is a zero morphism on cohomology and the first summand is a boundary.

The sum on the right is therefore a zero morphism. �

Lemma 3.7 Let us denote by Matn(C) the algebra of all square n× n- matrices with complex

entries. Then we have a natural isomorphism

Z2Ȟ
∗(Matn(C)) ∼= Z2Ȟ

∗(C).

Proof. Every complex matrix can be homotopic to a unitary one. Then, every unitary matrix

can be by conjugation reduced to a diagonal matrix of complex numbers of module 1. Every

elementary block (in this case, diagonal element)[eiθ ] is homotopic to identity [1] by the classical

homotopy [eiθt]0≤t≤1, i.e.
[

cos θ − sin θ
sin θ cos θ

]

∼ I =

[

1 0
0 1

]

.

�

Lemma 3.8 (Adjoint functors) There is a natural equivalence of functors Hom and ⊗:

Hom(R⊗Mn(C),M) ∼= Hom(R,Hom(Mn(C),M)).

Proof. This isomorphism of functors is a particular case of the general adjointness between

Hom and ⊗ in homological algebra. �

Lemma 3.9 There is a natural isomorphism of derived functors

Rq Hom(Mn(C),M) ∼= Rq Hom(C,M).

Proof. It is an easy exercise from homological algebra. �

Theorem 3.10 (Morita Invariance)

Z2Ȟ
∗(A⊗Matn(C)) ∼= Z2Ȟ

∗(A).
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Proof. Let us remark that A→ A⊗Matn(C) is a fiber bundle. Now apply the Grothendieck’s

Leray-Serre spectral sequence for this fibration. Following the previous lemmas 3.8 and 3.9,

there is a natural isomorphism of functors

Rp Hom(R⊗Mn(C), Rq(M) ∼= Rp Hom(R,Rq Hom(Mn(C),M)),

which are the E2 term of a Leray-Serre spectral sequence converging to the Čech cohomology.

�

Corollary 3.11 The Z2-graded Čech cohomology theory is a generalized cohomology theory.

4 Comparison with the classical Čech cohomology theory

In this section we show that a generalization of the Connes-Hochschild-Kostant-Rosenberg The-

orem can easily be obtained.

Theorem 4.1 Let A be a stable continuous C*-algebra with spectrum a smooth compact mani-

fold X, in fact A = C(X,K(P )) is the algebra of continuous sections of a smooth, locally trivial

bundle K(P ) := P ×PU K on X with fibre the algebra K of compact operators on a separable

Hilbert space associated to a principal PU bundle P on X via the adjoint action of PU on K.

Let δ(P ) ∈ H3(X;Z) be the Dixmier-Douady invariant, that classifies such algebras A and c(P )

some closed 3-form on X, that presents the class 2πiδ(P ) in the real cohomology. Let A be

the category of all *-representations of the C*-algebra A. Then the Z2-graded Čech cohomology

Z2Ȟ
∗(A) is isomorphic to the de Rham cohomology H∗(X; c(P )) which is isomorphic to the

classical Z2-graded Čech cohomology Z2Ȟ
∗(X; c(P )).

Proof. In this situation, the Z2-graded Čech cohomology of the category A is isomorphic to

the Connes periodic cyclic homology HP∗(C
∞(X,L1(P ))), where C∞(X,L1(P )) is consisting

of all smooth sections of the sub-bundle L1(P ) = P ×PU L
1 of K(P ) with fibre the algebra L1

of trace class operators on the Hilbert space with the same structure groups PU , see [MS] for a

more detailed proof in the language of periodic cyclic homology. �

Acknowledgments

The main part of this work was done while the author was visiting the Abdus Salam International

Centre for Theoretical Physics, Trieste, Italy. The author is grateful to ICTP and in particular

would like to express his sincere thanks to Professor Dr. Le Dung Trang for the invitation

and support. This work was supported in part by Vietnam National Project of Research in

Fundamental Sciences and the ICTP, UNESCO.

9



References

[KR] A. Rosenberg and M. Kontsevich Noncommutative smooth spaces, The Gelfand math-

ematical Seminar, 1996-1999,85–107.

[MS] V. Mathai and D. Stevenson, On a generalized Connes-Hochschild-Kostant-Rosenberg

theorem, arXiv: math.KT/0404329 v1, 19 April 2004.

[O] D. Orlov, Quasicoherent sheaves in commutative and noncommutative geometry, MPI-

1999-31 Preprint, 1999.

[R] A. L. Rosenberg, Noncommutative schemes, Compositio Math. 112(1998), 93–125.

[SGA4.2] M. Artin, A. Grothendieck, and J. L. Verdier , Théorie des topos et coho-
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