474 research outputs found

    Dynamic heterogeneities in attractive colloids

    Full text link
    We study the formation of a colloidal gel by means of Molecular Dynamics simulations of a model for colloidal suspensions. A slowing down with gel-like features is observed at low temperatures and low volume fractions, due to the formation of persistent structures. We show that at low volume fraction the dynamic susceptibility, which describes dynamic heterogeneities, exhibits a large plateau, dominated by clusters of long living bonds. At higher volume fraction, where the effect of the crowding of the particles starts to be present, it crosses over towards a regime characterized by a peak. We introduce a suitable mean cluster size of clusters of monomers connected by "persistent" bonds which well describes the dynamic susceptibility.Comment: 4 pages, 4 figure

    Two channel model for optical conductivity of high mobility organic crystals

    Full text link
    We show that the temperature dependence of conductivity of high mobility organic crystals Pentacene and Rubrene can be quantitatively described in the framework of the model where carriers are scattered by quenched local impurities and interact with phonons by Su-Schrieffer-Hegger (SSH) coupling. Within this model, we present approximation free results for mobility and optical conductivity obtained by world line Monte Carlo, which we generalize to the case of coupling both to phonons and impurities. We find fingerprints of carrier dynamics in these compounds which differ from conventional metals and show that the dynamics of carriers can be described as a superposition of a Drude term representing diffusive mobile particles and a Lorentz term associated with dynamics of localized charges.Comment: 6 pages, 5 figure

    Irreversible Opinion Spreading on Scale-Free Networks

    Full text link
    We study the dynamical and critical behavior of a model for irreversible opinion spreading on Barab\'asi-Albert (BA) scale-free networks by performing extensive Monte Carlo simulations. The opinion spreading within an inhomogeneous society is investigated by means of the magnetic Eden model, a nonequilibrium kinetic model for the growth of binary mixtures in contact with a thermal bath. The deposition dynamics, which is studied as a function of the degree of the occupied sites, shows evidence for the leading role played by hubs in the growth process. Systems of finite size grow either ordered or disordered, depending on the temperature. By means of standard finite-size scaling procedures, the effective order-disorder phase transitions are found to persist in the thermodynamic limit. This critical behavior, however, is absent in related equilibrium spin systems such as the Ising model on BA scale-free networks, which in the thermodynamic limit only displays a ferromagnetic phase. The dependence of these results on the degree exponent is also discussed for the case of uncorrelated scale-free networks.Comment: 9 pages, 10 figures; added results and discussion on uncorrelated scale-free networks; added references. To appear in PR

    Static and dynamic heterogeneities in irreversible gels and colloidal gelation

    Full text link
    We compare the slow dynamics of irreversible gels, colloidal gels, glasses and spin glasses by analyzing the behavior of the so called non-linear dynamical susceptibility, a quantity usually introduced to quantitatively characterize the dynamical heterogeneities. In glasses this quantity typically grows with the time, reaches a maximum and then decreases at large time, due to the transient nature of dynamical heterogeneities and to the absence of a diverging static correlation length. We have recently shown that in irreversible gels the dynamical susceptibility is instead an increasing function of the time, as in the case of spin glasses, and tends asymptotically to the mean cluster size. On the basis of molecular dynamics simulations, we here show that in colloidal gelation where clusters are not permanent, at very low temperature and volume fractions, i.e. when the lifetime of the bonds is much larger than the structural relaxation time, the non-linear susceptibility has a behavior similar to the one of the irreversible gel, followed, at higher volume fractions, by a crossover towards the behavior of glass forming liquids.Comment: 9 pages, 3 figure
    corecore