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The transport properties at finite temperature of crystalline organic semiconductors are investigated,
within the Su-Schrieffer-Heeger model, by combining an exact diagonalization technique, Monte Carlo
approaches, and a maximum entropy method. The temperature-dependent mobility data measured in single
crystals of rubrene are successfully reproduced: a crossover from super- to subdiffusive motion occurs in
the range 150 ≤ T ≤ 200 K, where the mean free path becomes of the order of the lattice parameter and
strong memory effects start to appear. We provide an effective model, which can successfully explain
features of the absorption spectra at low frequencies. The observed response to slowly varying electric field
is interpreted by means of a simple model where the interaction between the charge carrier and lattice
polarization modes is simulated by a harmonic interaction between a fictitious particle and an electron
embedded in a viscous fluid.
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Small molecule organic semiconductors, crystals of
small molecules held together by van der Waals forces,
are the focus of intensive research activity, being the
material basis for organic electronics and, in particular,
for plastic electronics, a rapidly developing field [1].
Because of the weak van der Waals intermolecular bonding,
there is a small overlap between the electronic orbitals of
these small molecules leading to narrow electronic bands:
the transfer integral t turns out to be about 100 meV [2,3].
At the same time, the electron-phonon interaction (EPI)
plays a crucial role [4], and now, it is well established that it
stems from Peierls’s coupling mechanism [5]. EPI exhibits
a strong momentum dependence and, given the pronounced
anisotropy of these compounds [6], typically the coupling
of the electrons with the lattice vibrations is described by
using a one-dimensional tight-binding model involving
Einstein phonons with the lattice displacements affecting
the electronic hopping integral [2,7] (Su-Schrieffer-Heeger
coupling [8]). However, the understanding of charge trans-
port in organic semiconductors remains limited. Indeed,
from an experimental point of view, ultrapure crystals of
pentacene or rubrene exhibit (1) thermally activated trans-
port at low temperatures [6,9,10] (up to≃160 K), and (2) a
bandlike mobility up to room temperature; i.e., the mobility
decreases as T−γ with γ ≃ 2 [9,11]. At the same time, at
room temperature, optical absorption spectra are charac-
terized by a broad peak centered around 40 meV [12],
reminiscent of disordered systems in the insulating phase. It
has been shown that the rapid drop of the mobility below
160 K is due to the crossover to the trap-dominated regime

(extrinsic disorder). Measurements of the transverse Hall
conductivity [9,13] allowed us to extract the intrinsic,
trap-free mobility that always increases with cooling
(shallow traps do not contribute to the Hall voltage since
the Lorentz force is zero for these charge carriers). It
remains to explain the puzzle regarding the simultaneous
presence of the signature of intrinsic bandlike transport
(power-law dependence of mobility vs temperature) and
localized states [absorption spectra feature broad peak
centered at finite frequency, whereas in the Drude model
the optical conductivity (OC) shows a maximum at ω ¼ 0].
The starting point of several approaches present in the
literature is the mechanical softness of these compounds:
the characteristic energy of the lattice transverse modes ω0

is about 5 meV, which is much less than the electronic
transfer integral t [3,14]. Then the idea is to use the
adiabatic approximation: the phonon variables are treated
classically, and the electron contribution to the partition
function is calculated at fixed lattice displacements neglect-
ing the retardation effects [15]. In the one-dimensional
case, the problem turns out to be equivalent to that of a
particle in the presence of an off-diagonal disorder, which
provides a vanishing mobility (Anderson localization [16]).
In order to overcome this difficulty, the fluctuations of
the lattice vibrations, completely neglected in the adiabatic
approximation (it becomes exact when ω0 → 0 and the
ionic massM → ∞ keeping k ¼ Mω2

0 constant [17]), have
to be taken into account. To this aim, it has been proposed
(i) to employ mixed quantum-classical simulations based
on the Ehrenfest coupled equations [14], (ii) to neglect
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vertex corrections in the OC calculation [18], (iii) to
introduce an ad hoc energy broadening of the system
energy levels [15], and (iv): to use the relaxation time
approximation [19]. All these approximated approaches
either (1) contain external parameters that the theory is not
able to fix in a self-consistent way [15,19], or (2) although
able to reproduce a power-law dependence of mobility vs
temperature [14], do not restore the conductivity values
quantitatively [14,18]. It is clear that transport properties
crucially depend on the exact dynamics of the lattice at long
times. In this Letter, we go beyond the adiabatic approxi-
mation: both lattice and electronic degrees of freedom obey
exactly (from a numeric point of view) quantum dynamics.
We combine exact an diagonalization technique [20],
diagrammatic [21] and worldline [22] Monte Carlo
approaches, and a maximum entropy method [23] to obtain
an unbiased result. The model Hamiltonian is given by
(see also the Supplemental Material [24])

H ¼
X

k

ðϵkc†kck þ ω0b
†
kbkÞ þ

X

q;k

ðMq;kc
†
kþqckbq þ H:c:Þ;

ð1Þ

where ϵk ¼ −2t cosðkaÞ denotes the electron band with
hopping t, c†k (b†k) represents the momentum electron
(phonon) creation operator, and Einstein optical
phonons have frequency ω0. The EPI vertex is Mq;k ¼
2i ~αt=

ffiffiffiffi
N

p
( sinðkþ qÞa − sinðkaÞ) describing the transfer

integral modulation on the distance between nearest
neighbors with strength ~α (N denotes the number of sites
and a is the lattice parameter). We use units such that
ℏ ¼ e ¼ kB ¼ 1, where e is the electronic charge and kB is
the Boltzmann constant. We shall study the system by
assuming values of the parameters typical of single-crystal
organic semiconductors, taking rubrene as a case study [7].
We set a¼ 7.2Å,ω0 ¼ 0.05t, ~α ¼ 0.092, and t ¼ 93 meV.
Within the linear response theory, the light absorption, at

low densities, is proportional to the particle concentration.
The proportionality constant is OC [31]

σðzÞ ¼ i
z
(ΠðzÞ − Γ); ð2Þ

where z lies in the complex upper half-plane, z ¼ ωþ iϵ
with ϵ > 0; the quantity Γ is

Γ ¼ −
Z

β

0

dshjðsÞjð0Þi; ð3Þ

andΠðzÞ represents the current-current correlation function

ΠðzÞ ¼ −i
Z

∞

0

dτeizτh½jðτÞ; jð0Þ�i: ð4Þ

In Eq. (4) [Eq. (3)] jðτÞ [jðsÞ] is the real-time (imaginary-
time) Heisenberg representation of the current operator

(see the Supplemental Material [24]) and ½; � denotes the
commutator, hi indicates the thermal average, and
β ¼ 1=T. The real part of the OC [ReσðωÞ ¼
Reσðωþ iϵÞ, ϵ → 0þ] is related to the imaginary-time
current-current correlation function

ΠðsÞ ¼
Z

∞

−∞
dω

1

π

ωe−ωs

1 − eβω
ReσðωÞ: ð5Þ

The function ΠðsÞ has been calculated by using diagram-
matic [21] and worldline [22] Monte Carlo methods,
checking that both approaches give the same results. The
dynamical spectra, then, is extracted from the integral
equation, Eq. (5), through the maximum entropy method
[23]. In particular, we used the Bryan’s method choosing,
as default model, the OC obtained through exact diago-
nalization on a lattice of 20 sites with periodic boundary
conditions (at the investigated temperatures the mean free
path, MFP, is less than 6a so that such a small lattice
provides a very good starting point).
In Fig. 1 we plot the OC at three different temperatures,

comparing exact results obtained from the numerical sim-
ulations with those of two limiting cases stemming from
Boltzmann [32] and adiabatic approaches [15]. It is evident
that neither Boltzmann treatment, involving one-phonon
scattering processes, nor the adiabatic approach, where
electrons move in a static lattice and the mobility goes to
zero at any temperature, are able to correctly describe the
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FIG. 1 (color online). [(a)–(c)] OC, in units of a2e2=ℏ, in
different approximations: exact results (solid red line),
Boltzmann (long-dashed blue line), and adiabatic (short-dashed
black line) approaches. (d) Temperature dependence of the
mobility in rubrene [9] (green squares) compared with exact
results (red circles) and Boltzmann approach (blue triangles).
In the inset is mobility (exact results in units cm2=Vs) in a wider
range of temperatures.
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charge carrier dynamics at low frequencies [33]. Indeed,
only at very short times (ω ≫ ω0) is the OC behavior well
captured by the adiabatic treatment [see the inset of
Fig. 1(c)]: at high frequencies the Franck-Condon principle
can be invoked, and the lattice is frozen during electron
transitions between different energetic levels. On the other
hand, at long times (ω ≤ ω0) the lattice dynamic cannot be
neglected, and the OC can be obtained only by treating
correctly both electron and lattice vibration fluctuations. In
Fig. 1(d) the temperature-dependentmobility data measured
in single crystals of rubrene [9] (intrinsic, trap-freemobility)
are successfully compared with our numerical results
μ ¼ Reσðω → 0þÞ=e; our approach is able to recover both
qualitatively and quantitatively the features of the absorption
spectra at low frequencies. We emphasize [see inset of
Fig. 1(d)] the interesting mobility behavior at very high
(but unphysical) temperatures indicating the saturation of
the direct current conductivity at T ≃ 1000 K.
Also worthy of note is the remarkable behavior of

the resistivity ρðωÞ ¼ 1=σðωÞ, as function of the frequency,
shown in Fig. 2(a) at different temperatures. At T ¼ 54 K
there is a single absolute minimum at ω ¼ 0, at
T ¼ 161 K the curve is flat at this minimum, and finally
at T ¼ 297 K two minima develop at finite frequency. In
order to investigate more deeply the microscopic physical
mechanisms underlying this finding, we have calculated the
instantaneous diffusivity [34]

DðτÞ ¼ 1

2

dΔx2

dτ
¼

Z
∞

0

dω
ReσðωÞ sinðωτÞ

π tanhðβω
2
Þ ; ð6Þ

and the quantity Δx2 ¼ h(xðτÞ − xð0Þ)2i, i.e., the mean-
square displacement (MSD) of the position operator x.
Locally, around τ0, MSD grows as ταðτ0Þ with the diffusion
exponent αðτ0Þ equal to the logarithmic slope of Δx2:
αðτ0Þ ¼ τ0Dðτ0Þ=MSDðτ0Þ. In Fig. 2(b) we plot the dif-
fusion exponent vs the time τ (in units of 1=ω0) at different
temperatures. At very short times αðτÞ is about 2; i.e., the
motion is ballistic independently on the temperature.
However, after a transient time the curves differ signifi-
cantly. Indeed, at T ¼ ω0 ¼ 54 K the evolution is always
superdiffusive [αðτÞ > 1] and approaches, only at long
times, diffusive behavior αðτÞ → 1. On the other hand, at
T ¼ 5.5ω0 ¼ 297 K, there is a broad range of values of τ
for which αðτÞ < 1, signaling the onset of subdiffusive
motion. However, also here, at very large times τ ≫ 1=ω0,
the motion becomes diffusive. Finally, in the range 150 ≤
T ≤ 200 K [see also inset of Fig. 2(b)] the ballistic motion
is rapidly followed by the diffusion. Further insight into the
problem is provided by the analysis of the optical relaxation
time and the MFP. To this aim, the OC is written in terms of
the memory function MðωÞ [35],

σðωÞ ¼ −i
Γ

ωþ iMðωÞ : ð7Þ

At ω ¼ 0 the function M is real and determines the
reciprocal of the optical relaxation time 1=τr so that the
mobility turns out to be μ ¼ −τrΓ. This last relation allows
us to extract τr [in SSH model the quantity Γ is equal to the
sum of thermal averages of the first and third term of the
Hamiltonian Eq. (1)]. The MFP is defined by MFP ¼ vτr,
and a rough estimate of the average velocity v can be
obtained by v≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Πðτ ¼ 0Þp
. In Fig. 2(c) [inset of

Fig. 2(c)] we plot the temperature dependence of τr
(MFP). By increasing T, τr (MFP) decreases and becomes
of the order of 1=t (the lattice parameter) just around 200 K.
The crossover from super-to subdiffusive motion then
signals the onset of the incoherent motion regime, where
the charge carriers are strongly scattered in the real space
and the bandlike picture breaks down. Interestingly the
imaginary part of the conductivity, at low frequencies,
changes sign across the crossover [see Fig. 2(d)] becoming
negative when T > 200 K.
It is possible to show that the subdiffusion is a direct

consequence of the memory effects. To this aim, we note
that the Mori formalism allows us to reformulate, in an
exact way, the Heisenberg equation of motion of any
dynamical variable in terms of a generalized Langevin
equation [36]. It is possible by introducing a Hilbert space
of operators (whose invariant parts are set to be zero) where
the inner product is defined by

ðA; BÞ ¼ 1

β

Z
β

0

hesHA†e−sHBids: ð8Þ

In particular, the current operator obeys the equation
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FIG. 2 (color online). Resistivity (a) and diffusion exponent
(b) at different temperatures (symbols are the same in the two
panels). (c) τr (in units of 1=t) vs temperature (in the inset MFP
in units of a). (d) Imaginary part of the conductivity at two
temperatures.
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dj
dτ

¼ −
Z

τ

0

Mðτ − rÞjðrÞdrþ fðτÞ; ð9Þ

where the quantity fðτÞ represents the “random force,”
that is, at any time, orthogonal to j and is related to the
memory functionM by the fluctuation-dissipation formula.
The solution of this equation can be expressed as
jðτÞ ¼ ΣðτÞjþ ~jðτÞ, i.e., ΣðτÞ ¼ (j; jðτÞ)=ðj; jÞ describes
the time evolution of the projection of jðτÞ on the axis
parallel to j and represents the relaxation of the current
operator (it is related to the Fourier transform of the real
part of OC), whereas ~jðτÞ is always orthogonal to j. In
Figs. 3(a) and 3(b) we compare ReΣðτÞ and the memory
function MðτÞ at T ¼ 54 K and T ¼ 297 K. The plots
point out that while at low T the relaxation occurs on a time
scale very much longer than the one characteristic of the
memory function, at high T, where subdiffusion sets in, the
two time scales are of the same order. It is a clear indication
of the presence of strong memory effects (breakdown of the
Markovian approximation) that arise at T > 200 K.
Particularly interesting is the time response of the

polarization operator P [37]. It obeys an equation similar
to Eq. (9). We indicate with RðτÞ the function (P;PðτÞ) that
is related to the relaxation function of P and with χðτÞ the
dielectric susceptibility [it is obtained by replacing jðτÞ
with PðτÞ in Eq. (4) and removing the minus sign] that
provides the response of P to a weak external field. It is
possible to show that dR=dτ ¼ −ð1=βÞχðτÞ and χðzÞ ¼
iσðzÞ=z so that the knowledge of σðzÞ fully determines the
system response. In particular, if we assume a Drude model
for the charge carriers, i.e., σðzÞ ¼ ðσdc=~τrÞ½i=ðzþ i=~τrÞ�
[σdc ¼ Reσðω ¼ 0Þ], RðτÞ turns out to be ΔRðτÞ ¼
RðτÞ − Rðτ ¼ 0Þ ¼ −Tσdc½τ þ ~τrðe−τ=~τr − 1Þ�. In Fig. 3(c)
we plot GðτÞ ¼ ΔRðτÞ þ Tσdcτ vs τ at different temper-
atures. At T ¼ 57K, GðτÞ is very close to the function
Tσdcτrð1 − e−τ=τrÞ; i.e., the Drude model with ~τr ¼ τr (best
fit recovers just ~τr ¼ τr) reproduces very well the behavior
of P relaxation at almost any time. By increasing temper-
ature it is evident, from the plots in Fig. 3(b), that a Drude-
like behavior is limited to a smaller range of τ values and a
negative contribution appears, whose relaxation occurs on a
longer time scale. We found that a linear superposition
of Drude- and Drude-Lorentz-like (damped harmonically
bound particles, see the Supplemental Material [24])
contributions represents a good fit of the function GðτÞ
at any temperature [see for example the inset of Fig. 3(c)].
In any case it is worthy of note that the best fit recovers
~τr ¼ τr at any temperature. While in the Drude model the
memory effects are absent [MðτÞ ∝ δðτÞ], in the Drude-
Lorentz model the memory function is a superposition of
two contributions: the first one is again ∝ δðτÞ, whereas the
other one is constant as function of the time τ. As a direct
consequence of Eq. (7), the mobility in Drude-Lorentz
model is zero and the maximum of OC is located at finite
frequency. This explains the simultaneous presence of the
signature of localized states (Drude-Lorentz model) and

intrinsic bandlike transport (stemming from the Drude
term). Indeed, Fig. 3(d) shows that the linear superposition
of two (Drude- and Drude-Lorentz-like) contributions, with
parameters fixed by the best-fit procedure for GðτÞ, is able
to successfully describe the OC low frequencies behavior.
Here, the response can be described by simulating the
interaction between the charge carrier and lattice polariza-
tion modes by a harmonic interaction between a fictitious
particle and an electron embedded in a viscous fluid. The
center of mass (relative) motion turns out to be well
represented by a Drude-like (Drude-Lorentz-like) model
(see the Supplemental Material [24]). It is worthy of note
that the dynamics of the relative motion of this effective
system is underdamped below 200 K and becomes over-
damped above 200 K. We found that the Drude-Lorenz-like
contribution turns to be out negligible at T < 150 K. On
the other hand, above 150 K, by increasing T the weight
of the Drude-Lorentz-like contribution grows: this explains
the change of sign of ImσðωÞ at low frequencies observed
in Fig. 2(d). Indeed, ImσðωÞ describes the current transport
out of phase with the external field. ImσðωÞ > 0
[ImσðωÞ < 0] in the Drude (Drude-Lorentz) model: at
T ¼ 200 K there is a crossover from inductive behavior,
due to the inertia of electrons, to capacitive behavior, due to
the relative motion of an electron-fictitious particle system.
In conclusion, by combining an exact diagonalization

technique, Monte Carlo approaches, and a maximum
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FIG. 3 (color online). [(a) and (b)] Comparison between current
operator relaxation function and memory function at two temper-
atures; FðτÞ stands for the dimensionless quantities ReΣðτÞ and
MðτÞ=Mðτ ¼ 0Þ. (c) Relaxation function of the polarization
[symbols as in panel of Fig. 2(a)] at different temperatures; in
the inset is a comparison with the model (green circles).
(d) ReσðωÞ: exact results (red solid line); Drude-Lorentz con-
tribution (DLC) (long-dashed purple line), and note that the
mobility of DLC is zero; Drude contribution (DC) (short-dashed
brown line); DCLþ DC (green circles).
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entropy method, we found that a crossover from super- to
subdiffusive motion occurs in the range 150 ≤ T ≤ 200 K,
where the relaxation time τr is of the order of 1=t
(τr ≪ 1=ω0), the motion becomes incoherent, and strong
memory effects start to appear. OC low frequencies features
are well described by an effective model where the electron
and a fictitious particle, embedded in a viscous fluid,
harmonically interact with each other.
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