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We present the first unbiased results for the mobility μ of a one-dimensional Holstein polaron obtained
by numerical analytic continuation combined with diagrammatic and worldline Monte Carlo methods in
the thermodynamic limit. We have identified for the first time several distinct regimes in the λ-T
plane including a band conduction region, incoherent metallic region, an activated hopping region, and a
high-temperature saturation region. We observe that although mobilities and mean free paths at different
values of λ differ by many orders of magnitude at small temperatures, their values at T larger than the
bandwidth become very close to each other.
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Introduction.—The motion of a quantum particle in a
background of quantum phonons (polaron) is an issue of
fundamental importance [1]. Historically, it is the first
condensed-matter problem where the quantum field theory
has been successfully applied [2]. Experimentally, a small
number of carriers in insulators and semiconductors intro-
duced by doping or excited by light are key players in many
important phenomena, where the transport properties of
these carriers are influenced by polaron effects [3]. This is
also the case of doped Mott insulators where the role of
electron-phonon coupling (EPC) has to be considered in
relation to high-temperature superconductivity [4].
There is no exact solution of the polaron problem and

most of the analysis is based on approximate methods [1],
ranging from variational [5] and perturbative approaches
[6] to the momentum average approximation for the
Green’s function [7]. It is only recently that numerically
exact solutions for the ground-state energy and optical
conductivity at zero temperature were obtained by dia-
grammatic Monte Carlo simulations [8–13], variational
[14–16] and exact [17] diagonalization, density-matrix
renormalization group [18], and Chebyshev expansion
[19], showing the limits of the different approximate
schemes. Finite temperature properties are even more
difficult to analyze due to several technical problems,
and more than 6 decades of efforts to understand the
temperature dependence of polaron mobility μλðω; TÞ,
ranging from already historic papers [2,20–27] to the
modern studies [3,28–35], established different behaviors
which, however, do not exhaust the regimes exhibited by
materials where EPC is relevant. To discuss them, we
consider the one-dimensional Holstein polaron model [20]

H ¼
X
k

ðεkc†kck þ ω0b
†
kbkÞ þ

gffiffiffiffi
N

p
X
k;q

c†k−qckðb†q þ b−qÞ:

Here, c†k (b
†
k) are electron (phonon) creation operators in the

state of momentum k. The dispersion εk ¼ −2t cosðkaÞ
stems from a nearest-neighbor hopping on a linear lattice
with lattice constant a, and the Einstein optical phonons
have energy ω0. The last term describes the local EPC. All
sums over momenta are over the Brillouin zone, and we
take the total number of sites N → ∞. The charge current
operator of the model is ĵ ¼ 2eat

P
k sinðkaÞc†kck, where e

is the electron charge. The strength of the EPC is measured
by the dimensionless coupling constant λ ¼ g2=ð2tω0Þ,
which sets the borderline between the weak- and strong-
coupling regime at λc of the order of unity. For one polaron,
we introduce the dynamic mobility μλðω; TÞ ¼ σλðω; TÞ=e
as a quantity related to the optical conductivity (OC)
σλðω; TÞ. The static mobility μλðTÞ ¼ μλðω → 0; TÞ is just
the quantity measured in standard transport experiments.

FIG. 1 (color online). Transport regimes of polaron. Schematic
phase diagram showing the four different regimes of polaron
mobility μ in the plane of λ-T (λ: EPC strength, T: temperature).
Here, the unit of energy is t ¼ 1, and ω0 is the phonon frequency.
Arrows show the direction of shift of the borderlines between
different regimes when the phonon frequency decreases.
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The phase diagram.—In Fig. 1 the different transport
regions, emerging in the λ-T plane, are highlighted [36].
The optical conductivity is obtained through analytic
continuation, starting from the current-current correlation
function, calculated with diagrammatic and worldline
Monte Carlo methods and by using a stochastic optimiza-
tion approach (see the Supplemental Material [37]). As was
revealed from our numeric results, there are two main
crossovers separating distinct regions. One is the temper-
ature TDðλÞ above which the Drude-like peak (DLP) in
μλðω; TÞ disappears. The second is the temperature TCðλÞ
above which the mean free path (MFP) becomes shorter
than the lattice constant. We found that TDðλÞ coincides
with the change in the temperature dependence of μλðTÞ,
while TCðλÞ indicates the crossover from the band con-
duction to the incoherent metallic motion. Namely, despite
an always metallic T dependence dμλðTÞ=dT < 0 at
T < TDðλÞ, one cannot always assume that the description
in terms of a standard band motion with large MFP is valid.
Indeed, the band motion takes place only in the left lower
corner of the λ-T diagram, whereas the incoherent metallic
behavior with short MFP is realized at T > TCðλÞ. Note the
absolutely different nature of transport in these two regimes
that both display power-law T dependence

μmetalðTÞ ∼ T−δ ð1Þ
with the index δ ≈ 2 at weak (λ ≪ 1) and δ ≈ 3 at
intermediate and strong couplings (λ ≥ 0.5).
As raising T above TDðλÞ, the temperature dependence

of mobility μλðTÞ considerably changes. At high temper-
atures “mobility saturation” is observed: the steepness of
the mobility temperature dependence dμλðTÞ=dT becomes
considerably smaller for weak EPC λ < λc. In contrast, at
larger EPC, λ > λc, and lower temperatures [but still at
T > TDðλÞ], a different transport regime, the well-known
“activated hopping,” sets in: dμλðTÞ=dT becomes positive.
It has been derived analytically [20,21,25,31,46] and
confirmed for specific parameters by our numeric results
that in the last case

μhopðTÞ ∼ T−κ expð−εa=TÞ; ð2Þ

where κ ¼ 1 (κ ¼ 3=2) for adiabatic ω0 ≪ t (nonadiabatic
ω0 ≫ t) cases. Here, the activation energy εa is

εa ¼ Eb=2 − t0; ð3Þ
where Eb is the polaron binding energy, i.e., the renorm-
alization of the lowest energy level due to the electron-
phonon coupling and t0 ¼ t (t0 ¼ 0) in the adiabatic
(antiadiabatic) case. The hopping transport begins above
a temperature that has been derived to lie in the range
between ω0=4 and ω0=2 [20,25]. As we found in our
studies, at high enough temperatures, the mobility μλðTÞ
tends to saturate also at strong EPC. Moreover, at all
couplings, weak or strong, the mobilities converge to close

values that are almost independent of EPC λ, at least in the
logarithmic scale.
It is worth discussing the evolution of TCðλÞ and TDðλÞ

curves with the adiabaticity ω0=t (note that the curves
shown in Fig. 1 have been obtained at ω0 ¼ t). By studying
a more adiabatic case ω0 ¼ t=4 (Supplemental Material
[37]), we conclude that all the statements we put below for
ω0 ¼ t do not change qualitatively for ω0 ¼ t=4. The only
changes in the schematic phase diagram (see arrows in
Fig. 1) are the shift down of TCðλÞ and TDðλÞ governed by
the decrease of ω0=4 and shift to the left dictated by the
decrease of the critical EPC from λcðω0 ¼ tÞ ≈ 2 to
λcðω0 ¼ t=4Þ ≈ 1.1 [see Figs. 2(b)–2(d)]. We conclude
that the general properties are governed by the ratio
ω0=ð4tÞ of the phonon frequency to the bandwidth
W ¼ 4t, which is similarly small for both cases. The
Boltzmann constant kB, a, t, ℏ, and e are set to unity
throughout the Letter.
From weak to strong coupling regime.—Below, we

present numeric data for the Holstein model at ω0 ¼ t, if
it is not stated otherwise. The goal is to get μλðω; TÞ in the
weak, intermediate, and strong EPC in a wide range of
temperatures. The crossover from weak λ ≪ 1 to strong
λ ≫ 1 regime is extremely smooth in one dimension
[47,48]. So, we used the diagrammatic Monte Carlo
method [8] to find the value of the coupling λc constant
dividing these regimes and calculated the effective mass
renormalization m�=m0, the binding energy Eb, and the
mean number of phonons hHphi (Hph ¼

P
kb

†
kbk) in the

phonon cloud of a single polaron [Figs. 2(b), 2(c), and 2(d)]
at T ¼ 0. The second derivatives d2hHphi=dλ2 and
d2ðm�=m0Þ=dλ2 change signs at λc. Therefore, we define
weak (λ < λc), intermediate (λ≃ λc), and strong λ > λc
coupling regions. Also, the temperature dependence of the
kinetic energy [Fig. 2(a)] suggests the same value for λc.
Indeed, the average value of the kinetic energy h−K̂xxi is a
monotonic (nonmonotonic) function of T at λ < λc (λ > λc)
with crossover value λc ≅ 2 at ω0 ¼ t and λc ≅ 1 at
ω0 ¼ t=4.
The transport properties.—In Fig. 3(a) we present μλðTÞ

in the perturbative (λ ¼ 0.01), weak (λ ¼ 0.5), intermediate
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FIG. 2 (color online). Dependence of polaron properties on λ.
(a) Temperature dependence of the kinetic energy for ω0 ¼ t (in
units of t). Dependence at T ¼ 0 of (b) the effective massm�=m0,
(c) the binding energy (in units of t), and (d) the mean number of
phonons in the polaron cloud for ω0 ¼ t (circles) and ω0 ¼ t=4
(diamonds).
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(λ ¼ 2), and strong (λ ¼ 3 and 4) EPC limits. First, we
show that we reproduce the Boltzmann result in the
perturbative limit [compare the open squares and solid
bold line in Fig. 3(a)]. Here, the physics is well described
by a semiclassical picture; i.e., the MFP is much greater
than the lattice parameter, and the motion remains coherent
over a long distance before the electron is scattered.
A perturbative low λ analytic treatment of the Holstein
model predicts power laws (1) with δ ¼ 3=2 for T ≪ t and
δ ¼ 2 for T ≫ t [22]. Our data [dash-dot line fitting
positions of the open squares in Fig. 3(a)] in the range
0.32 < T < 2 support the value δ ¼ 2. We restricted our
analysis to T > 0.3 at λ ¼ 0.01 because of the instability of
the spectral analysis for extremely narrow (< 10−3) and
high (> 103) Drude peaks (Supplemental Material [37]).
The Boltzmann (bold dashed line) and unbiased (open

circles) results are already different at λ ¼ 0.5 [Fig. 3(a)].
Actually, for larger couplings, λ ≥ 0.5, one can always fit
μλðTÞ by a power law (1) below some λ-dependent temper-
ature TDðλÞ: TDðλ ¼ 0.5Þ ≈ 0.5 and TDðλ ≥ 2Þ ≈ 0.25.
However, the index of the power law is different from
δ ¼ 2 found in the perturbative λ ≪ 1 limit. The best fit
provides δ ≈ 2.8 for λ ¼ 0.5; 3; 4 and δ ≈ 3.2 for λ ¼ 2
[dash-dot-dot lines fitting low-temperature positions of
open circles, diamonds, filled circles, and filled squares
in Fig. 3(a)]. Our result is consistent with an exponent
3=2≲ δ≲ 3 that is experimentally observed in many
different materials [28,29,50–57]. We emphasize that the
dμλðTÞ=dT < 0 behavior at low temperatures cannot be
regarded as a proof of weak EPC.

For T > TDðλÞ, one can observe mobility saturation at
λ ≤ 2 whereas, at λ ¼ 3; 4, hopping transport followed by
mobility saturation. In particular, the hopping transport is
naturally distinguished from the resistivity saturation regime
by the existence of a temperature range with positive
derivative dμλðTÞ=dT > 0 above a characteristic temper-
ature whose analytical estimate is in the range betweenω0=4
and ω0=2 [20,25]. We get a value consistent with ≈ω0=4
[filled circles and filled squares for mobilities at λ ¼ 3 and 4
in Fig. 3(a)]. The analytic value of the activation energy
εa of the activation law (2) is related to the binding energy
of polaron Eb in Eq. (3). Inserting the binding energy of
the polaron Eb ¼ 4.19 (Eb ¼ 6.14) at λ ¼ 3 (λ ¼ 4)
into Eq. (3), one obtains εa ¼ 1.1 (εa ¼ 2.07), which is
very close to the value 1.2 (2.1) obtained by the fit of
μλðT > 0.3Þ at λ ¼ 3 (λ ¼ 4) [see short-dash (dotted) line
fitting the high-temperature dependence of filled circles
(squares) in Fig. 3(a)]. Note that the fit is consistent only
with the estimate of the activation energy in Eq. (3)
corresponding to the adiabatic regime.
The mean free path.—So far, our analysis can distinguish

a low-T regime at T < TDðλÞ, where power-law decrease of
mobility is observed and, at T > TDðλÞ, two different
regimes depending on temperature and EPC. However, it
is clear that low-T regimes must be different at λ ≪ 1 and
λ ≫ 1 because an increase of λ must eventually encounter
the Mott-Ioffe-Regel limit for MFP lMFP where band
conduction with lMFP > a changes to an incoherent met-
allic transport with lMFP < a. To estimate the MFP lMFP,
we write the optical absorption σðωÞ ¼ −ihK̂xxi=
½ωþ iMðωÞ� in terms of the memory function MðωÞ
[58,59]. At ω ¼ 0, the function M is real and determines
the reciprocal of the optical relaxation time 1=τr so that the
mobility turns to be μ ¼ −hK̂xxiτr. This last relation allows
us to extract τr, an important characteristic of equilibrium
and even nonequilibrium [60] polaron dynamics. The MFP
is defined by lMFP ¼ vτr, and a rough estimate of the

average velocity v can be obtained by v≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hĵð0Þĵð0Þi

q
. In

Fig. 3(b) we plot the temperature dependence of lMFP at the
different values of λ.
As shown above, analysis of our data distinguish four

regimes. Two low-T regimes, band conduction and inco-
herent metallic transport, are characterized by the power-
law decrease of mobility when T increases. These two
regimes are distinguished by the MFP, which is much larger
than the lattice constant in the first case and much smaller
than a in the second case. They are separated from the two
high-T regimes by λ-dependent temperature TDðλÞ, where
the metallic temperature dependence of mobility signifi-
cantly changes. It becomes slower in the high-temperature
saturation regime that sets up above TDðλÞ at λ ≤ λc. To the
contrary, μλðTÞ starts to increase with temperature at large
EPC λ > λc, although it also eventually saturates at large T.
Careful analysis of the frequency-dependent mobility
μλðω; TÞ shows that TDðλÞ separates profoundly different
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FIG. 3 (color online). Temperature dependence of mobility and
MFP at ω0 ¼ t. (a) dc mobility μλðTÞ (in units of ea2=ℏ).
Unbiased numeric values at λ ¼ 0.01 (open squares), λ ¼ 0.5
(open circles), λ ¼ 2 (semifilled diamonds), λ ¼ 3 (filled circles),
and λ ¼ 4 (filled squares). Solid bold (λ ¼ 0.01) and dashed bold
(λ ¼ 0.5) lines in the top part of the figure show the results
obtained by the Boltzmann approach [49]. Fit of the mobility by
the activation law Eqs. (2) and (3) is shown for T > 0.2 at λ ¼ 3
(short-dash line) and λ ¼ 4 (dotted line). Linear dash-dot-dot
lines are fits of the low-temperature contribution of mobility, for
all the values of λ, by a power law μ ∼ T−δ. (b) MFP, in units of
the lattice parameter a, vs temperature [the symbols are the same
as those used in panel (a)].
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physical regimes. Namely, the DLP centered at ω ¼ 0 is
observed only below TDðλÞ. This peak is explained by
Drude theory, which assumes a single constant scattering
rate and leads to μðωÞ described by a Lorentzian centered at
ω ¼ 0; i.e., a Bloch picture can be invoked. In any case, the
weight of this peak decreases by increasing EPC and
temperature and becomes negligible above TDðλÞ where
full incoherent motion sets in; i.e., the real space descrip-
tion becomes crucial and the Bloch picture breaks down.
We note that the temperature TDðλÞ, where the DLP
disappears, coincides with the temperature where conduc-
tivity saturation starts or with the temperature where the
activated hopping regime arises [20,25].
Figure 4 shows temperature dependence of the μλðω; TÞ

in the weak EPC, λ ¼ 0.5. The low-energy Drude peak is
clearly seen at low T, T ≤ 0.16, it almost vanishes at
0.32 < T < 0.5, and it is absent for T > 0.5. The mobility
in the band conduction regime quickly decreases with
temperature at T < 0.32, which coincides with the temper-
ature range of the Drude peak existence. For higher temper-
atures, in agreementwith assumptionsmade inRefs. [61–64],
the resistivity saturation occurs. Furthermore, we found that
theDrude peak at λ ¼ 0.5 andT < 0.32 gradually disappears
without significant change of the high-energy part, which is
again in complete agreement with Refs. [61–64].
The T dependence of the μλðω; TÞ at strong EPC, λ ¼ 4

(Fig. 5), also supports the statement that the large negative
derivative dμλðTÞ=dT < 0 is associated with the presence
of a DLP. Indeed, dμλðTÞ=dT < 0 at T ≤ 0.16 (Fig. 3),
which is just the range where DLP is seen [Fig. 5(a)]. As
previously discussed, this regime is not related to a
coherent band conduction transport, but it stems from an
incoherent motion of the charge carriers with short MFP. To
the contrary, a DLP is absent [Fig. 5(b)] in the domain of
the thermally activated transport, T ≥ 0.25 (Fig. 3). It is
known [65] and confirmed in our study that the OC is
characterized by a broad peak with the maximum around
twice the binding energy [Fig. 5(b)]. At 0.25 < T < 2, we
find that μλðω; TÞ is T independent at ω > εa while the
spectral weight at ω < εa growth exponentially when T

increases [Fig. 5(b)]. Then, the spectral weight starts to
spread to larger frequencies when T > 2 and, as a result, the
static mobility μλðTÞ starts to saturate.
Conclusions.—We presented for the first time unbiased

results for the temperature dependence of the optical
conductivity σλðω; TÞ [or dynamic mobility μλðω; TÞ)]
and static mobility μλðTÞ of the one-dimensional
Holstein polaron. The transport features display a strong
λ and T dependence. In particular, we proved that a low-T
power-law behavior exists until the DLP in the OC
disappears at TDðλÞ. However, while the standard bandlike
transport is recovered at weak couplings, an unconventional
incoherent regime is observed at larger couplings.
Moreover, at T > TDðλÞ, the μ-saturation (activated hop-
ping transport) phenomenon occurs at weak (strong)
couplings. Finally, our data imply that although mobilities
and MFPs at different values of λ differ by many orders of
magnitude at small temperatures, their values at T > 4t
become very close to each other (Fig. 3). Namely, regard-
less of the strength of the EPC, the effective scattering of a
polaron turns out to be very strong when the temperature
exceeds the bare bandwidth 4t.
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