100 research outputs found

    A Large Hadron Electron Collider at CERN

    Full text link
    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100) fb1^{-1}. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC

    Risk of infections in bronchiectasis during disease-modifying treatment and biologics for rheumatic diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bronchiectasis is frequently associated (up to 30%) with chronic inflammatory rheumatic diseases and leads to lower respiratory tract infections. Data are lacking on the risk of lower respiratory tract infections in patients treated with biologic agents.</p> <p>Methods</p> <p>Monocenter, retrospective systematic study of all patients with a chronic inflammatory rheumatic disease and concomitant bronchiectasis, seen between 2000 and 2009. Univariate and multivariate analyses were performed to evidence predictive factors of the number of infectious respiratory events.</p> <p>Results</p> <p>47 patients were included (mean age 64.1 ± 9.1 years, 33 (70.2%) women), with a mean follow-up per patient of 4.3 ± 3.1 years. Rheumatoid arthritis was the main rheumatic disease (90.1%). The mean number of infectious events was 0.8 ± 1.0 event per patient-year. The factors predicting infections were the type of treatment (biologic vs. non biologic disease-modifying treatments), with an odds ratio of 8.7 (95% confidence interval: 1.7-43.4) and sputum colonization by any bacteria (odds ratio 7.4, 2.0-26.8). In multivariate analysis, both factors were independently predictive of infections.</p> <p>Conclusion</p> <p>Lower respiratory tract infectious events are frequent among patients receiving biologics for chronic inflammatory rheumatic disease associated with bronchiectasis. Biologic treatment and pre-existing sputum colonization are independent risk factors of infection occurrence.</p

    Production of gamma rays by pulsed laser beam Compton scattering off GeV-electrons using a non-planar four-mirror optical cavity

    Full text link
    As part of the positron source R&D for future e+ee^+-e^- colliders and Compton based compact light sources, a high finesse non-planar four-mirror Fabry-Perot cavity has recently been installed at the ATF (KEK, Tsukuba, Japan). The first measurements of the gamma ray flux produced with a such cavity using a pulsed laser is presented here. We demonstrate the production of a flux of 2.7 ±\pm 0.2 gamma rays per bunch crossing (3×106\sim3\times10^6 gammas per second) during the commissioning

    Technical Design Report EuroGammaS proposal for the ELI-NP Gamma beam System

    Full text link
    The machine described in this document is an advanced Source of up to 20 MeV Gamma Rays based on Compton back-scattering, i.e. collision of an intense high power laser beam and a high brightness electron beam with maximum kinetic energy of about 720 MeV. Fully equipped with collimation and characterization systems, in order to generate, form and fully measure the physical characteristics of the produced Gamma Ray beam. The quality, i.e. phase space density, of the two colliding beams will be such that the emitted Gamma ray beam is characterized by energy tunability, spectral density, bandwidth, polarization, divergence and brilliance compatible with the requested performances of the ELI-NP user facility, to be built in Romania as the Nuclear Physics oriented Pillar of the European Extreme Light Infrastructure. This document illustrates the Technical Design finally produced by the EuroGammaS Collaboration, after a thorough investigation of the machine expected performances within the constraints imposed by the ELI-NP tender for the Gamma Beam System (ELI-NP-GBS), in terms of available budget, deadlines for machine completion and performance achievement, compatibility with lay-out and characteristics of the planned civil engineering

    Early inhaled budesonide for the prevention of bronchopulmonary dysplasia

    Get PDF
    BACKGROUND Systemic glucocorticoids reduce the incidence of bronchopulmonary dysplasia among extremely preterm infants, but they may compromise brain development. The effects of inhaled glucocorticoids on outcomes in these infants are unclear. METHODS We randomly assigned 863 infants (gestational age, 23 weeks 0 days to 27 weeks 6 days) to early (within 24 hours after birth) inhaled budesonide or placebo until they no longer required oxygen and positive-pressure support or until they reached a postmenstrual age of 32 weeks 0 days. The primary outcome was death or bronchopulmonary dysplasia, confirmed by means of standardized oxygen-saturation monitoring, at a postmenstrual age of 36 weeks. RESULTS A total of 175 of 437 infants assigned to budesonide for whom adequate data were available (40.0%), as compared with 194 of 419 infants assigned to placebo for whom adequate data were available (46.3%), died or had bronchopulmonary dysplasia (relative risk, stratified according to gestational age, 0.86; 95% confidence interval [CI], 0.75 to 1.00; P = 0.05). The incidence of bronchopulmonary dysplasia was 27.8% in the budesonide group versus 38.0% in the placebo group (relative risk, stratified according to gestational age, 0.74; 95% CI, 0.60 to 0.91; P = 0.004); death occurred in 16.9% and 13.6% of the patients, respectively (relative risk, stratified according to gestational age, 1.24; 95% CI, 0.91 to 1.69; P = 0.17). The proportion of infants who required surgical closure of a patent ductus arteriosus was lower in the budesonide group than in the placebo group (relative risk, stratified according to gestational age, 0.55; 95% CI, 0.36 to 0.83; P = 0.004), as was the proportion of infants who required reintubation (relative risk, stratified according to gestational age, 0.58; 95% CI, 0.35 to 0.96; P = 0.03). Rates of other neonatal illnesses and adverse events were similar in the two groups. CONCLUSIONS Among extremely preterm infants, the incidence of bronchopulmonary dysplasia was lower among those who received early inhaled budesonide than among those who received placebo, but the advantage may have been gained at the expense of increased mortality

    Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel

    Get PDF
    Dark matter lighter than 10  GeV/c2 encompasses a promising range of candidates. A conceptual design for a new detector, DarkSide-LowMass, is presented, based on the DarkSide-50 detector and progress toward DarkSide-20k, optimized for a low-threshold electron-counting measurement. Sensitivity to light dark matter is explored for various potential energy thresholds and background rates. These studies show that DarkSide-LowMass can achieve sensitivity to light dark matter down to the solar neutrino fog for GeV-scale masses and significant sensitivity down to 10  MeV/c2 considering the Migdal effect or interactions with electrons. Requirements for optimizing the detector’s sensitivity are explored, as are potential sensitivity gains from modeling and mitigating spurious electron backgrounds that may dominate the signal at the lowest energies

    Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel

    Full text link
    Dark matter lighter than 10 GeV/c2^2 encompasses a promising range of candidates. A conceptual design for a new detector, DarkSide-LowMass, is presented, based on the DarkSide-50 detector and progress toward DarkSide-20k, optimized for a low-threshold electron-counting measurement. Sensitivity to light dark matter is explored for various potential energy thresholds and background rates. These studies show that DarkSide-LowMass can achieve sensitivity to light dark matter down to the solar neutrino floor for GeV-scale masses and significant sensitivity down to 10 MeV/c2^2 considering the Migdal effect or interactions with electrons. Requirements for optimizing the detector's sensitivity are explored, as are potential sensitivity gains from modeling and mitigating spurious electron backgrounds that may dominate the signal at the lowest energies

    The XENONnT Dark Matter Experiment

    Full text link
    The multi-staged XENON program at INFN Laboratori Nazionali del Gran Sasso aims to detect dark matter with two-phase liquid xenon time projection chambers of increasing size and sensitivity. The XENONnT experiment is the latest detector in the program, planned to be an upgrade of its predecessor XENON1T. It features an active target of 5.9 tonnes of cryogenic liquid xenon (8.5 tonnes total mass in cryostat). The experiment is expected to extend the sensitivity to WIMP dark matter by more than an order of magnitude compared to XENON1T, thanks to the larger active mass and the significantly reduced background, improved by novel systems such as a radon removal plant and a neutron veto. This article describes the XENONnT experiment and its sub-systems in detail and reports on the detector performance during the first science run.Comment: 32 pages, 19 figure
    corecore