14,626 research outputs found

    Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal

    Full text link
    Using laser tweezers and fluorescence confocal polarizing microscopy, we study colloidal interactions of solid microspheres in the nematic bulk caused by elastic distortions around the particles with strong tangential surface anchoring. The particles aggregate into chains directed at about 30 degrees to the far field director and, at higher concentrations, form complex kinetically trapped structures. We characterize the distance and angular dependencies of the colloidal interaction forces.Comment: 6 pages, 5 figure

    Modified SPLICE and its Extension to Non-Stereo Data for Noise Robust Speech Recognition

    Full text link
    In this paper, a modification to the training process of the popular SPLICE algorithm has been proposed for noise robust speech recognition. The modification is based on feature correlations, and enables this stereo-based algorithm to improve the performance in all noise conditions, especially in unseen cases. Further, the modified framework is extended to work for non-stereo datasets where clean and noisy training utterances, but not stereo counterparts, are required. Finally, an MLLR-based computationally efficient run-time noise adaptation method in SPLICE framework has been proposed. The modified SPLICE shows 8.6% absolute improvement over SPLICE in Test C of Aurora-2 database, and 2.93% overall. Non-stereo method shows 10.37% and 6.93% absolute improvements over Aurora-2 and Aurora-4 baseline models respectively. Run-time adaptation shows 9.89% absolute improvement in modified framework as compared to SPLICE for Test C, and 4.96% overall w.r.t. standard MLLR adaptation on HMMs.Comment: Submitted to Automatic Speech Recognition and Understanding (ASRU) 2013 Worksho

    3D Modeling and Clash Deduction of PBS-Television Center, Hawaii

    Full text link
    This experimental investigation carried out on the present mostly using software in construction Industries Revit which is software of Autodesk, Revit is building information modeling software for architects, structural engineers, MEP engineers, designers and contractors developed by Autodesk. It allows users to design a building and structure and its components in 3D, annotate the model with 2D drafting elements, and access building information from the building model#39s database. Revi is 4D BIM capable with tools to plan and track various stages in the building#39s lifecycle, from concept to construction and later demolition. This Project carried on the 3D modeling of a building which includes the design of Structural, Architectural, and Plumbing modeling. After modeling of the design this modeling was Plug Inn into the Navis Work Manage. It is also Autodesk software where we can find the Clashes and check the Quantity and Quality of the materials use in the construction. BY using this Softwarersquos in this project, we can give the detailed Information of the building structure and design before the construction in a detail. Where we can control the difficulties occurs during the working progress of the building, Wastage of the Materials can be deducted, The Clashes occurs at Walls, Beams, Footings, Columns, and we can see the Clashes between Structural and Architectural Plans and also between Structural and MEP (Mechanical, Electrical, Plumbing) plans and we can get the proper exact estimation of the Building materials and time of the project

    Visualisation of an entangled channel spin-1 system

    Get PDF
    Co-variance matrix formalism gives powerful entanglement criteria for continuous as well as finite dimensional systems. We use this formalism to study a mixed channel spin-1 system which is well known in nuclear reactions. A spin-j state can be visualized as being made up of 2j spinors which are represented by a constellation of 2j points on a Bloch sphere using Majorana construction. We extend this formalism to visualize an entangled mixed spin-1 system.Comment: 4 pages,4 figure

    Affirmed Crowd Sensor Selection based Cooperative Spectrum Sensing

    Get PDF
    The Cooperative Spectrum sensing model is gaining importance among the cognitive radio network sharing groups. While the crowd-sensing model (technically the cooperative spectrum sensing) model has positive developments, one of the critical challenges plaguing the model is the false or manipulated crowd sensor data, which results in implications for the secondary user’s network. Considering the efficacy of the spectrum sensing by crowd-sensing model, it is vital to address the issues of falsifications and manipulations, by focusing on the conditions of more accurate determination models. Concerning this, a method of avoiding falsified crowd sensors from the process of crowd sensors centric cooperative spectrum sensing has portrayed in this article. The proposal is a protocol that selects affirmed crowd sensor under diversified factors of the decision credibility about spectrum availability. An experimental study is a simulation approach that evincing the competency of the proposal compared to the other contemporary models available in recent literature

    Phonon sidebands of localized excitons in molecular crystals with methyl torsions: Hexamethylbenzene

    Full text link
    Fluorescence and phosphorescence phonon sidebands of isotopic mixed hexamethylbenzene crystals at 2°K are presented. The external phonons can be observed separately from the semi‐internal (methyl torsion) ones. The nature of the electronic or vibronic state has observable but not drastic effects on the exciton‐phonon coupling function. Likewise, the exciton delocalization is of minor importance to the exciton‐phonon function in hexamethylbenzene. The coupling between external and internal vibrations is also weak in this system. The exciton‐phonon coupling appears comparable for the optical and acoustic phonons in hexamethylbenzene. The phonon sidebands give some of the phonon singularities of the low‐temperature crystal.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70173/2/JCPSA6-60-6-2365-1.pd
    corecore