810 research outputs found

    Multiple scattering of matter waves: an analytic model of the refractive index for atomic and molecular gases

    Full text link
    We present an analytic model of the refractive index for matter waves propagating through atomic or molecular gases. The model, which combines a WKB treatment of the long range attraction with the Fraunhofer model treatment of the short range repulsion, furnishes a refractive index in compelling agreement with recent experiments of Jacquey et al. [Phys. Rev. Lett. 98, 240405 (2007)] on Li atom matter waves passing through dilute noble gases. We show that the diffractive contribution, which arises from scattering by a two dimensional "hard core" of the potential, is essential for obtaining a correct imaginary part of the refractive index.Comment: 5 pages, 1 figure, 2 table

    An analytic model of rotationally inelastic collisions of polar molecules in electric fields

    Full text link
    We present an analytic model of thermal state-to-state rotationally inelastic collisions of polar molecules in electric fields. The model is based on the Fraunhofer scattering of matter waves and requires Legendre moments characterizing the "shape" of the target in the body-fixed frame as its input. The electric field orients the target in the space-fixed frame and thereby effects a striking alteration of the dynamical observables: both the phase and amplitude of the oscillations in the partial differential cross sections undergo characteristic field-dependent changes that transgress into the partial integral cross sections. As the cross sections can be evaluated for a field applied parallel or perpendicular to the relative velocity, the model also offers predictions about steric asymmetry. We exemplify the field-dependent quantum collision dynamics with the behavior of the Ne-OCS(1Σ^{1}\Sigma) and Ar-NO(2Π^2\Pi) systems. A comparison with the close-coupling calculations available for the latter system [Chem. Phys. Lett. \textbf{313}, 491 (1999)] demonstrates the model's ability to qualitatively explain the field dependence of all the scattering features observed

    The space physics environment data analysis system (SPEDAS)

    Get PDF
    With the advent of the Heliophysics/Geospace System Observatory (H/GSO), a complement of multi-spacecraft missions and ground-based observatories to study the space environment, data retrieval, analysis, and visualization of space physics data can be daunting. The Space Physics Environment Data Analysis System (SPEDAS), a grass-roots software development platform (www.spedas.org), is now officially supported by NASA Heliophysics as part of its data environment infrastructure. It serves more than a dozen space missions and ground observatories and can integrate the full complement of past and upcoming space physics missions with minimal resources, following clear, simple, and well-proven guidelines. Free, modular and configurable to the needs of individual missions, it works in both command-line (ideal for experienced users) and Graphical User Interface (GUI) mode (reducing the learning curve for first-time users). Both options have “crib-sheets,” user-command sequences in ASCII format that can facilitate record-and-repeat actions, especially for complex operations and plotting. Crib-sheets enhance scientific interactions, as users can move rapidly and accurately from exchanges of technical information on data processing to efficient discussions regarding data interpretation and science. SPEDAS can readily query and ingest all International Solar Terrestrial Physics (ISTP)-compatible products from the Space Physics Data Facility (SPDF), enabling access to a vast collection of historic and current mission data. The planned incorporation of Heliophysics Application Programmer’s Interface (HAPI) standards will facilitate data ingestion from distributed datasets that adhere to these standards. Although SPEDAS is currently Interactive Data Language (IDL)-based (and interfaces to Java-based tools such as Autoplot), efforts are under-way to expand it further to work with python (first as an interface tool and potentially even receiving an under-the-hood replacement). We review the SPEDAS development history, goals, and current implementation. We explain its “modes of use” with examples geared for users and outline its technical implementation and requirements with software developers in mind. We also describe SPEDAS personnel and software management, interfaces with other organizations, resources and support structure available to the community, and future development plans.Published versio

    Kinetic equations for thermal degradation of polymers

    Full text link
    Kinetic equations are analyzed for thermal degradation of polymers. The governing relations are based on the fragmentation-annihilation concept. Explicit solutions to these equations are derived in two particular cases of interest. For arbitrary values of adjustable parameters, the evolution of the number-average and mass-average molecular weights of polymers is analyzed numerically. Good agreement is demonstrated between the results of numerical simulation and experimental data. It is revealed that the model can correctly predict observations in thermo-gravimetric tests when its parameters are determined by matching experimental data for the decrease in molecular weight with exposure time

    Dynamics of a metastable state nonlinearly coupled to a heat bath driven by an external noise

    Full text link
    Based on a system-reservoir model, where the system is nonlinearly coupled to a heat bath and the heat bath is modulated by an external stationary Gaussian noise, we derive the generalized Langevin equation with space dependent friction and multiplicative noise and construct the corresponding Fokker-Planck equation, valid for short correlation time, with space dependent diffusion coefficient to study the escape rate from a metastable state in the moderate to large damping regime. By considering the dynamics in a model cubic potential we analyze the result numerically which are in good agreement with the theoretical prediction. It has been shown numerically that the enhancement of rate is possible by properly tuning the correlation time of the external noise.Comment: 13 pages, 5 figures, Revtex4. To appear in Physical Review

    The nonlinear time-dependent response of isotactic polypropylene

    Full text link
    Tensile creep tests, tensile relaxation tests and a tensile test with a constant rate of strain are performed on injection-molded isotactic polypropylene at room temperature in the vicinity of the yield point. A constitutive model is derived for the time-dependent behavior of semi-crystalline polymers. A polymer is treated as an equivalent network of chains bridged by permanent junctions. The network is modelled as an ensemble of passive meso-regions (with affine nodes) and active meso-domains (where junctions slip with respect to their positions in the bulk medium with various rates). The distribution of activation energies for sliding in active meso-regions is described by a random energy model. Adjustable parameters in the stress--strain relations are found by fitting experimental data. It is demonstrated that the concentration of active meso-domains monotonically grows with strain, whereas the average potential energy for sliding of junctions and the standard deviation of activation energies suffer substantial drops at the yield point. With reference to the concept of dual population of crystalline lamellae, these changes in material parameters are attributed to transition from breakage of subsidiary (thin) lamellae in the sub-yield region to fragmentation of primary (thick) lamellae in the post-yield region of deformation.Comment: 29 pages, 12 figure

    Chemical analysis of aerosol in the Venusian cloud layer by reaction gas chromatography on board the Vega landers

    Get PDF
    The experiment on sulfuric acid aerosol determination in the Venusian cloud layer on board the Vega landers is described. An average content of sulfuric acid of approximately 1 mg/cu m was found for the samples taken from the atmosphere at heights from 63 to 48 km and analyzed with the SIGMA-3 chromatograph. Sulfur dioxide (SO2) was revealed in the gaseous sample at the height of 48 km. From the experimental results and blank run measurements, a suggestion is made that the Venusian cloud layer aerosol consists of more complicated particles than the sulfuric acid water solution does

    Effect of EMIC waves on relativistic and ultrarelativistic electron populations: Ground-based and Van Allen Probes observations

    Get PDF
    Abstract We study the effect of electromagnetic ion cyclotron (EMIC) waves on the loss and pitch angle scattering of relativistic and ultrarelativistic electrons during the recovery phase of a moderate geomagnetic storm on 11 October 2012. The EMIC wave activity was observed in situ on the Van Allen Probes and conjugately on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity throughout an extended 18 h interval. However, neither enhanced precipitation of \u3e0.7 MeV electrons nor reductions in Van Allen Probe 90° pitch angle ultrarelativistic electron flux were observed. Computed radiation belt electron pitch angle diffusion rates demonstrate that rapid pitch angle diffusion is confined to low pitch angles and cannot reach 90°. For the first time, from both observational and modeling perspectives, we show evidence of EMIC waves triggering ultrarelativistic (~2-8 MeV) electron loss but which is confined to pitch angles below around 45° and not affecting the core distribution. Key Points EMIC wave activity is not associated with precipitation of MeV electrons EMIC waves do not deplete the ultra-relativistic belt down to 90° EMIC waves cause loss of low pitch angle electrons with energies ~2-8 MeV

    Early Observations and Analysis of the Type Ia SN 2014J in M82

    Full text link
    We present optical and near infrared (NIR) observations of the nearby Type Ia SN 2014J. Seventeen optical and twenty-three NIR spectra were obtained from 10 days before (-10d) to 10 days after (+10d) the time of maximum BB-band brightness. The relative strengths of absorption features and their patterns of development can be compared at one day intervals throughout most of this period. Carbon is not detected in the optical spectra, but we identify CI λ\lambda 1.0693 in the NIR spectra. We find that MgII lines with high oscillator strengths have higher initial velocities than other MgII lines. We show that the velocity differences can be explained by differences in optical depths due to oscillator strengths. The spectra of SN 2014J show it is a normal SN Ia, but many parameters are near the boundaries between normal and high-velocity subclasses. The velocities for OI, MgII, SiII, SII, CaII and FeII suggest that SN 2014J has a layered structure with little or no mixing. That result is consistent with the delayed detonation explosion models. We also report photometric observations, obtained from -10d to +29d, in the UBVRIJHUBVRIJH and KsK_s bands. SN 2014J is about 3 magnitudes fainter than a normal SN Ia at the distance of M82, which we attribute to extinction in the host. The template fitting package SNooPy is used to interpret the light curves and to derive photometric parameters. Using RVR_V = 1.46, which is consistent with previous studies, SNooPy finds that AV=1.80A_V = 1.80 for E(BV)host=1.23±0.01E(B-V)_{host}=1.23 \pm 0.01 mag. The maximum BB-band brightness of 19.19±0.10-19.19 \pm 0.10 mag was reached on February 1.74 UT ±0.13 \pm 0.13 days and the supernova had a decline parameter of Δm15=1.11±0.02\Delta m_{15}=1.11 \pm 0.02 mag.Comment: 6 figures, 6 tables, submitted to the Ap
    corecore