12,179 research outputs found
Management of Humeral Shaft Fractures; Non-Operative Versus Operative
Context: Functional humeral bracing remains the gold standard for treatment of humeral shaft fractures. There is an increasing trend in the literature to perform operative fixation of these fractures.
Evidence Acquisition: The aim of this systematic review was to compare the level one evidence for the outcome of non-operative with operative management of humeral shaft fractures in adults. A comprehensive electronic literature search of Medline and PubMed was performed with specific inclusion criteria to identify randomized controlled trials.
Results: In total, seventeen different studies were identified from the search terms and combinations used. Only one study met the inclusion criteria; however, this was a published study protocol of an ongoing trial currently being conducted. One additional published protocol for an ongoing trial was also identified, but this was for a prospective comparative observational study. Although this latter study may not be level one evidence, it would offer great insight into the functional outcome of humeral shaft fractures and economic implications of operative management, which is currently not addressed in the literature. Two retrospective comparative studies were also identified, one of which demonstrated a significantly lower rate of nonunion and malunion in those patients undergoing operative management.
Conclusions: This systematic review demonstrated a deficiency in the current literature of level one evidence available for the management of humeral shaft fractures. The current ongoing randomized control trail would offer a greater insight into the management of humeral shaft fractures and help confirm or refute the current literature. If this randomized control trial affirms the reduction in the rate of nonunion with operative fixation, a cost economic analysis is essential. As it would seem to offer operative management to all patients may be over treatment and not to offer this at all would undertreat
Multi-band spectroscopy of inhomogeneous Mott-insulator states of ultracold bosons
In this work, we use inelastic scattering of light to study the response of
inhomogeneous Mott-insulator gases to external excitations. The experimental
setup and procedure to probe the atomic Mott states are presented in detail. We
discuss the link between the energy absorbed by the gases and accessible
experimental parameters as well as the linearity of the response to the
scattering of light. We investigate the excitations of the system in multiple
energy bands and a band-mapping technique allows us to identify band and
momentum of the excited atoms. In addition the momentum distribution in the
Mott states which is spread over the entire first Brillouin zone enables us to
reconstruct the dispersion relation in the high energy bands using a single
Bragg excitation with a fixed momentum transfer.Comment: 19 pages, 7 figure
Visualizing probabilistic models: Intensive Principal Component Analysis
Unsupervised learning makes manifest the underlying structure of data without
curated training and specific problem definitions. However, the inference of
relationships between data points is frustrated by the `curse of
dimensionality' in high-dimensions. Inspired by replica theory from statistical
mechanics, we consider replicas of the system to tune the dimensionality and
take the limit as the number of replicas goes to zero. The result is the
intensive embedding, which is not only isometric (preserving local distances)
but allows global structure to be more transparently visualized. We develop the
Intensive Principal Component Analysis (InPCA) and demonstrate clear
improvements in visualizations of the Ising model of magnetic spins, a neural
network, and the dark energy cold dark matter ({\Lambda}CDM) model as applied
to the Cosmic Microwave Background.Comment: 6 pages, 5 figure
Killing Vector Fields in Three Dimensions: A Method to Solve Massive Gravity Field Equations
Killing vector fields in three dimensions play important role in the
construction of the related spacetime geometry. In this work we show that when
a three dimensional geometry admits a Killing vector field then the Ricci
tensor of the geometry is determined in terms of the Killing vector field and
its scalars. In this way we can generate all products and covariant derivatives
at any order of the ricci tensor. Using this property we give ways of solving
the field equations of Topologically Massive Gravity (TMG) and New Massive
Gravity (NMG) introduced recently. In particular when the scalars of the
Killing vector field (timelike, spacelike and null cases) are constants then
all three dimensional symmetric tensors of the geometry, the ricci and einstein
tensors, their covariant derivatives at all orders, their products of all
orders are completely determined by the Killing vector field and the metric.
Hence the corresponding three dimensional metrics are strong candidates of
solving all higher derivative gravitational field equations in three
dimensions.Comment: 25 pages, some changes made and some references added, to be
published in Classical and Quantum Gravit
X-ray diffraction from bone employing annular and semi-annular beams
This is the final version of the article. Available from the publisher via the DOI in this record.There is a compelling need for accurate, low cost diagnostics to identify osteo-tissues that are associated with a high risk of fracture within an individual. To satisfy this requirement the quantification of bone characteristics such as 'bone quality' need to exceed that provided currently by densitometry. Bone mineral chemistry and microstructure can be determined from coherent x-ray scatter signatures of bone specimens. Therefore, if these signatures can be measured, in vivo, to an appropriate accuracy it should be possible by extending terms within a fracture risk model to improve fracture risk prediction.In this preliminary study we present an examination of a new x-ray diffraction technique that employs hollow annular and semi-annular beams to measure aspects of 'bone quality'. We present diffractograms obtained with our approach from ex vivo bone specimens at Mo Kα and W Kα energies. Primary data is parameterized to provide estimates of bone characteristics and to indicate the precision with which these can be determined.We acknowledge gratefully the funding provided by the UK Engineering and Physical
Sciences Research Council (EPSRC) grant number EP/K020196/
All stationary axi-symmetric local solutions of topologically massive gravity
We classify all stationary axi-symmetric solutions of topologically massive
gravity into Einstein, Schr\"odinger, warped and generic solutions. We
construct explicitly all local solutions in the first three sectors and present
an algorithm for the numerical construction of all local solutions in the
generic sector. The only input for this algorithm is the value of one constant
of motion if the solution has an analytic centre, and three constants of motion
otherwise. We present several examples, including soliton solutions that
asymptote to warped AdS.Comment: 42 pages, 9 figures. v2: Changed potentially confusing labelling of
one sector, added references. v3: Minor changes, matches published versio
- …