17,640 research outputs found

    Jane Eyre and Education

    Full text link
    Charlotte Brontë created the first female Bildungsroman in the English language when she wrote Jane Eyre in the mid-nineteenth century. Brontë’s novel explores the development of a young girl through her educational experiences. The main character, Jane Eyre, receives a formal education as a young orphan and eventually becomes both a teacher and a governess. Jane’s life never strays far from formal education, regardless of whether she is teaching or being taught. In each of Jane’s experiences, she learns invaluable lessons, both in and out of the classroom environment. Jane excels in the sphere of formal education, which allows her to become a graceful and accomplished woman. However Jane learns the most important lessons of her life during crises. The moral and spiritual lessons Jane acquires in times of difficulty are the most important educational experiences she receives, and they allow her to progress from a lonely orphan to a happily married woman

    No evidence for intense, cold accretion onto YSOs from measurements of Li in T-Tauri stars

    Full text link
    We have used medium resolution spectra to search for evidence that proto-stellar objects accrete at high rates during their early 'assembly phase'. Models predict that depleted lithium and reduced luminosity in T-Tauri stars are key signatures of 'cold' high-rate accretion occurring early in a star's evolution. We found no evidence in 168 stars in NGC 2264 and the Orion Nebula Cluster for strong lithium depletion through analysis of veiling corrected 6708 angstrom lithium spectral line strengths. This suggests that 'cold' accretion at high rates (M_dot > 5 x 10-4 M_sol yr-1) occurs in the assembly phase of fewer than 0.5 per cent of 0.3 < M < 1.9 M_sol stars. We also find that the dispersion in the strength of the 6708 angstrom lithium line might imply an age spread that is similar in magnitude to the apparent age spread implied by the luminosity dispersion seen in colour magnitude diagrams. Evidence for weak lithium depletion (< 10 per cent in equivalent width) that is correlated with luminosity is also apparent, but we are unable to determine whether age spreads or accretion at rates less than 5 x 10-4 M_sol yr-1 are responsible.Comment: 13 pages, 10 figures; Accepted for publication in Monthly Notices of the Royal Astronomical Society, 2013 June 0

    Pre-main-sequence isochrones -- II. Revising star and planet formation timescales

    Full text link
    We have derived ages for 13 young (<30 Myr) star-forming regions and find they are up to a factor two older than the ages typically adopted in the literature. This result has wide-ranging implications, including that circumstellar discs survive longer (~10-12 Myr) and that the average Class I lifetime is greater (~1 Myr) than currently believed. For each star-forming region we derived two ages from colour-magnitude diagrams. First we fitted models of the evolution between the zero-age main-sequence and terminal-age main-sequence to derive a homogeneous set of main-sequence ages, distances and reddenings with statistically meaningful uncertainties. Our second age for each star-forming region was derived by fitting pre-main-sequence stars to new semi-empirical model isochrones. For the first time (for a set of clusters younger than 50 Myr) we find broad agreement between these two ages, and since these are derived from two distinct mass regimes that rely on different aspects of stellar physics, it gives us confidence in the new age scale. This agreement is largely due to our adoption of empirical colour-Teff relations and bolometric corrections for pre-main-sequence stars cooler than 4000 K. The revised ages for the star-forming regions in our sample are: ~2 Myr for NGC 6611 (Eagle Nebula; M 16), IC 5146 (Cocoon Nebula), NGC 6530 (Lagoon Nebula; M 8), and NGC 2244 (Rosette Nebula); ~6 Myr for {\sigma} Ori, Cep OB3b, and IC 348; ~10 Myr for {\lambda} Ori (Collinder 69); ~11 Myr for NGC 2169; ~12 Myr for NGC 2362; ~13 Myr for NGC 7160; ~14 Myr for {\chi} Per (NGC 884); and ~20 Myr for NGC 1960 (M 36).Comment: 28 pages, 18 figures, 34 tables, accepted for publication in MNRAS. All photometric catalogues presented in this paper are available online at the Cluster Collaboration homepage http://www.astro.ex.ac.uk/people/timn/Catalogues

    Quantitative Tools for Examining the Vocalizations of Juvenile Songbirds

    Get PDF
    The singing of juvenile songbirds is highly variable and not well stereotyped, a feature that makes it difficult to analyze with existing computational techniques. We present here a method suitable for analyzing such vocalizations, windowed spectral pattern recognition (WSPR). Rather than performing pairwise sample comparisons, WSPR measures the typicality of a sample against a large sample set. We also illustrate how WSPR can be used to perform a variety of tasks, such as sample classification, song ontogeny measurement, and song variability measurement. Finally, we present a novel measure, based on WSPR, for quantifying the apparent complexity of a bird's singing

    A lithium depletion boundary age of 22 Myr for NGC 1960

    Full text link
    We present a deep Cousins RI photometric survey of the open cluster NGC 1960, complete to R_C \simeq 22, I_C \simeq 21, that is used to select a sample of very low-mass cluster candidates. Gemini spectroscopy of a subset of these is used to confirm membership and locate the age-dependent "lithium depletion boundary" (LDB) --the luminosity at which lithium remains unburned in its low-mass stars. The LDB implies a cluster age of 22 +/-4 Myr and is quite insensitive to choice of evolutionary model. NGC 1960 is the youngest cluster for which a LDB age has been estimated and possesses a well populated upper main sequence and a rich low-mass pre-main sequence. The LDB age determined here agrees well with precise age estimates made for the same cluster based on isochrone fits to its high- and low-mass populations. The concordance between these three age estimation techniques, that rely on different facets of stellar astrophysics at very different masses, is an important step towards calibrating the absolute ages of young open clusters and lends confidence to ages determined using any one of them.Comment: Accepted for publication in MNRA

    RR Lyrae Stars In The GCVS Observed By The Qatar Exoplanet Survey

    Get PDF
    We used the light curve archive of the Qatar Exoplanet Survey (QES) to investigate the RR Lyrae variable stars listed in the General Catalogue of Variable Stars (GCVS). Of 588 variables studied, we reclassify 14 as eclipsing binaries, one as an RS Canum Venaticorum-type variable, one as an irregular variable, four as classical Cepheids, and one as a type II Cepheid, while also improving their periods. We also report new RR Lyrae sub-type classifications for 65 variables and improve on the GCVS period estimates for 135 RR Lyrae variables. There are seven double-mode RR Lyrae stars in the sample for which we measured their fundamental and first overtone periods. Finally, we detect the Blazhko effect in 38 of the RR Lyrae stars for the first time and we successfully measured the Blazhko period for 26 of them.Comment: Accepted IBV

    Cumulative live birth rates following blastocyst- versus cleavage-stage embryo transfer in the first complete cycle of IVF : a population-based retrospective cohort study

    Get PDF
    Acknowledgements: We thank the Human Fertilisation and Embryological Authority for permission to analyse their database, extracting the requested information and assisting with our queries in an efficient manner. We acknowledge the data management support of the Grampian Data Safe Haven (DaSH) and the associated financial support of NHS Research Scotland, through NHS Grampian investment in the Grampian DaSH. For more information, visit the DaSH website http://www.abdn.ac.uk/iahs/facilities/grampian-data-safe-haven.php. Funding: N.J.C. received a Wolfson Foundation Intercalated Degree Research Fellowship funded by the Wolfson Foundation, through the Royal College of Physicians. This work was supported by a Chief Scientist Office postdoctoral training fellowship in health services research and health of the public research (ref PDF/12/06). The views expressed here are those of the authors and not necessarily those of the Chief Scientist Office. The funders had no role in the design and conduct of the study; collection, management, analysis and interpretation of the data; preparation, review or approval of the manuscript; or decision to submit the manuscript for publication.Peer reviewedPostprin
    corecore