47,786 research outputs found

    Emotion Learning and Memory in Schizophrenia

    Full text link
    • Prior research indicates that processing of emotional information is particularly problematic for individuals with schizophrenia. • An important component of emotional processing is the accurate encoding and recall of emotionally valenced information. • The current study addresses this matter by investigating performance on a task assessing learning, recall, and recognition in patients with schizophrenia. • In this manner, recall of emotionally valenced information may be investigate

    Reduction of the QCD string to a time component vector potential

    Full text link
    We demonstrate the equivalence of the relativistic flux tube model of mesons to a simple potential model in the regime of large radial excitation. We make no restriction on the quark masses; either quark may have a zero or finite mass. Our primary result shows that for fixed angular momentum and large radial excitation, the flux tube/QCD string meson with a short-range Coulomb interaction is described by a spinless Salpeter equation with a time component vector potential V(r) = ar - k/r.Comment: RevTeX4, 10 pages, 3 eps figure

    Euclidean Thermal Green Functions of Photons in Generalized Euclidean Rindler Spaces for any Feynman-like Gauge

    Get PDF
    The thermal Euclidean Green functions for Photons propagating in the Rindler wedge are computed employing an Euclidean approach within any covariant Feynman-like gauge. This is done by generalizing a formula which holds in the Minkowskian case. The coincidence of the found (\be=2\pi)-Green functions and the corresponding Minkowskian vacuum Green functions is discussed in relation to the remaining static gauge ambiguity already found in previous papers. Further generalizations to more complicated manifolds are discussed. Ward identities are verified in the general case.Comment: 12 pages, standard latex, no figures, some signs changed, more comments added, final version to appear on Int. J. Mod. Phys.

    Unambiguous determination of gravitational waveforms from binary black hole mergers

    Full text link
    Gravitational radiation is properly defined only at future null infinity (\scri), but in practice it is estimated from data calculated at a finite radius. We have used characteristic extraction to calculate gravitational radiation at \scri for the inspiral and merger of two equal mass non-spinning black holes. Thus we have determined the first unambiguous merger waveforms for this problem. The implementation is general purpose, and can be applied to calculate the gravitational radiation, at \scri, given data at a finite radius calculated in another computation.Comment: 4 pages, 3 figures, published versio

    Analysis and application of digital spectral warping in analog and mixed-signal testing

    Get PDF
    Spectral warping is a digital signal processing transform which shifts the frequencies contained within a signal along the frequency axis. The Fourier transform coefficients of a warped signal correspond to frequency-domain 'samples' of the original signal which are unevenly spaced along the frequency axis. This property allows the technique to be efficiently used for DSP-based analog and mixed-signal testing. The analysis and application of spectral warping for test signal generation, response analysis, filter design, frequency response evaluation, etc. are discussed in this paper along with examples of the software and hardware implementation

    Plasmas generated by ultra-violet light rather than electron impact

    Get PDF
    We analyze, in both plane and cylindrical geometries, a collisionless plasma consisting of an inner region where generation occurs by UV illumination, and an un-illuminated outer region with no generation. Ions generated in the inner region flow outwards through the outer region and into a wall. We solve for this system's steady state, first in the quasi-neutral regime (where the Debye length λD{\lambda}_D vanishes and analytic solutions exist) and then in the general case, which we solve numerically. In the general case a double layer forms where the illuminated and un-illuminated regions meet, and an approximately quasi-neutral plasma connects the double layer to the wall sheath; in plane geometry the ions coast through the quasi-neutral section at slightly more than the Bohm speed csc_s. The system, although simple, therefore has two novel features: a double layer that does not require counter-streaming ions and electrons, and a quasi-neutral plasma where ions travel in straight lines with at least the Bohm speed. We close with a pr\'{e}cis of our asymptotic solutions of this system, and suggest how our theoretical conclusions might be extended and tested in the laboratory.Comment: 10 pages, 3 figures, accepted by Physics of Plasma

    Small-q electron-phonon scattering and linear dc resistivity in high-T_c oxides

    Full text link
    We examine the effect on the DC resistivity of small-q electron-phonon scattering, in a system with the electronic topology of the high-T_c oxides. Despite the fact that the scattering is dominantly forward, its contribution to the transport can be significant due to ``ondulations'' of the bands in the flat region and to the umpklapp process. When the extended van-Hove singularities are sufficiently close to EFE_F the acoustic branch of the phonons contribute significantly to the transport. In that case one can obtain linear TT dependent resistivity down to temperatures as low as 10 K, even if electrons are scattered also by optical phonons of about 500 K as reported by Raman measurements.Comment: LATEX file and 4 Postscript figure
    corecore