70 research outputs found

    Transcriptome sequencing of three Pseudo-nitzschia species reveals comparable gene sets and the presence of Nitric Oxide Synthase genes in diatoms

    Get PDF
    Diatoms are among the most diverse eukaryotic microorganisms on Earth, they are responsible for a large fraction of primary production in the oceans and can be found in different habitats. Pseudo-nitzschia are marine planktonic diatoms responsible for blooms in coastal and oceanic waters. We analyzed the transcriptome of three species, Pseudo-nitzschia arenysensis, Pseudo-nitzschia delicatissima and Pseudo-nitzschia multistriata, with different levels of genetic relatedness. These species have a worldwide distribution and the last one produces the neurotoxin domoic acid. We were able to annotate about 80% of the sequences in each transcriptome and the analysis of the relative functional annotations allowed comparison of the main metabolic pathways, pathways involved in the biosynthesis of isoprenoids (MAV and MEP pathways), and pathways putatively involved in domoic acid synthesis. The search for homologous transcripts among the target species and other congeneric species resulted in the discovery of a sequence annotated as Nitric Oxide Synthase (NOS), found uniquely in Pseudo-nitzschia multistriata. The predicted protein product contained all the domains of the canonical metazoan sequence. Putative NOS sequences were found in other available diatom datasets, supporting a role for nitric oxide as signaling molecule in this group of microalgae

    Redox activities and ROS, NO and phenylpropanoids production by axenically cultured intact olive seedling roots after interaction with a mycorrhizal or a pathogenic fungus

    Get PDF
    Las raíces de las plántulas de olivo, en cultivo axénico, fueron colocadas alternativamente en contacto con Rhizophagus irregulares (micorrícicos) o con hongos Verticillim dahliae (patógenos). También se incluyeron tratamientos MeJA. Las raíces intactas (generación de anión superóxido, superóxido dismutasa y actividades de peroxidasa) se midieron en las actividades in vivo del apoplasto. Todos nuestros resultados mostraron que las actividades redox apoplásticas de raíces de las plántulas intactas en contacto con el hongo micorriza compatible fueron claramente atenuados en comparación con el hongo patógeno o tratado con MeJA, incluso en las primeras etapas usadas en el tratamiento. Los fenoles totales, flavonoides y glucósidos fenilpropanoides, también fueron cuantificados. Las raíces en contacto con el hongo micorriza no mejoraron la biosíntesis de compuestos fenólicos con respecto a los controles, mientras que los de contacto con el patógeno mejoraron de forma significativa la biosíntesis de todas las fracciones fenólicas medidas. Las especies reactivas del oxígeno y la acumulación de óxido nítrico en las raíces fueron examinadas por microscopía de fluorescencia. Todos ellas presentaron una acumulación mucho mayor en las raíces en contacto con el patógeno que con el hongo micorriza. En total, estos resultados indican que las raíces de las plántulas intactas de olivo, claramente diferenciadas entre micorrizas y hongos patógenos, atenuan las reacciones de defensa contra la primera para facilitar su creación, mientras que induce una reacción de defensa fuerte y sostenida contra el segundo. Ambas especies reactivas de oxígeno y nitrógeno parecían estar involucrados en estas respuestas desde los primeros momentos de contacto. Sin embargo, se necesitan más investigaciones para aclarar la diafonía propuesta entre ellos y sus respectivas funciones en estas respuestas ya que las imágenes de fluorescencia de las raíces revelaron que las especies reactivas del oxígeno se acumulan principalmente en el apoplasto (congruente con las actividades redox medidas en este compartimento), mientras el óxido nítrico se almacena principalmente en el citosol.Roots of intact olive seedlings, axenically cultured, were alternatively placed in contact with Rhizophagus irregularis (mycorrhizal) or Verticillim dahliae (pathogenic) fungi. MeJA treatments were also included. In vivo redox activities in the apoplast of the intact roots (anion superoxide generation, superoxide dismutase and peroxidase activities) were measured. All our results showed that apoplastic redox activities of intact seedling roots in contact with the compatible mycorrhizal fungus were clearly attenuated in comparison with the pathogenic fungus or treated with MeJA, even at the early stages of treatment used. Total phenolics, flavonoids and phenylpropanoid glycosides were also quantified. Roots in contact with the mycorrhizal fungus did not enhance the biosynthesis of phenolic compounds with respect to controls, while those in contact with the pathogenic one significantly enhanced the biosynthesis of all phenolic fractions measured. Reactive oxygen species and nitric oxid accumulation in roots were examined by fluorescence microscopy. All of them presented much higher accumulation in roots in contact with the pathogenic than with the mycorrhizal fungus. Altogether these results indicate that intact olive seedling roots clearly differentiated between mycorrhizal and pathogenic fungi, attenuating defense reactions against the first to facilitate its establishment, while inducing a strong and sustained defense reaction against the second. Both reactive oxygen and nitrogen species seemed to be involved in these responses from the first moments of contact. However, further investigations are required to clarify the proposed crosstalk between them and their respective roles in these responses since fluorescence images of roots revealed that reactive oxygen species were mainly accumulated in the apoplast (congruently with the measured redox activities in this compartment) while nitric oxid was mainly stored in the cytosol.-- Ministerio de Ciencia e Innovación. Proyecto CGL2009-12406 -- Junta de Extremadura. Proyecto PRI09A023peerReviewe

    Nitric Oxide Controls Constitutive Freezing Tolerance in Arabidopsis by Attenuating the Levels of Osmoprotectants, Stress-Related Hormones and Anthocyanins

    Full text link
    [EN] Plant tolerance to freezing temperatures is governed by endogenous constitutive components and environmental inducing factors. Nitric oxide (NO) is one of the endogenous components that participate in freezing tolerance regulation. A combined metabolomic and transcriptomic characterization of NO-deficient nia1,2noa1¿2 mutant plants suggests that NO acts attenuating the production and accumulation of osmoprotective and regulatory metabolites, such as sugars and polyamines, stress-related hormones, such as ABA and jasmonates, and antioxidants, such as anthocyanins and flavonoids. Accordingly, NO-deficient plants are constitutively more freezing tolerant than wild type plants.This work was supported by grants BIO2011-27526 and BIO2014-56067-P from the Spanish Ministry of Economy and Competitiveness and FEDER funds. We thank support and comments from Janice Jones and Danny Alexander (Metabolon Inc., USA) on metabolomic analyses.Costa-Broseta, Á.; Perea-Resa, C.; Castillo López Del Toro, MC.; Ruíz, MF.; Salinas, J.; Leon Ramos, J. (2018). Nitric Oxide Controls Constitutive Freezing Tolerance in Arabidopsis by Attenuating the Levels of Osmoprotectants, Stress-Related Hormones and Anthocyanins. Scientific Reports. 8. https://doi.org/10.1038/s41598-018-27668-8S8Janská, A., Marsík, P., Zelenková, S. & Ovesná, J. Cold stress and acclimation - what is important for metabolic adjustment? Plant Biol (Stuttg) 12, 395–405 (2010).Eremina, M., Rozhon, W. & Poppenberger, B. Hormonal control of cold stress responses in plants. Cell Mol Life Sci 73, 797–810 (2016).Winkel-Shirley, B. Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5, 218–223 (2002).Cuevas, J. C. et al. Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148, 1094–105 (2008).Chen, M. & Thelen, J. J. Acyl-lipid desaturase 1 primes cold acclimation response in Arabidopsis. Physiol Plant 158, 11–22 (2016).Takahashi, D., Kawamura, Y. & Uemura, M. Cold acclimation is accompanied by complex responses of glycosylphosphatidylinositol (GPI)-anchored proteins in Arabidopsis. J Exp Bot 67, 5203–5215 (2016).van Buer, J., Cvetkovic, J. & Baier, M. Cold regulation of plastid ascorbate peroxidases serves as a priming hub controlling ROS signaling in Arabidopsis thaliana. BMC Plant Biol 16(1), 163 (2016).Zhao, M. G., Chen, L., Zhang, L. L. & Zhang, W. H. Nitric reductase dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151, 755–767 (2009).Puyaubert, J. & Baudouin, E. New clues for a cold case: nitric oxide response to low temperature. Plant Cell & Environ 37, 2623–2630 (2014).Siddiqui, M. H., Al-Whaibi, M. H. & Basalah, M. O. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248, 447–455 (2011).Arasimowicz-Jelonek, M. & Floryszak-Wieczorek, J. Nitric oxide: an effective weapon of the plant or the pathogen? Mol. Plant Pathol. 15, 406–416 (2014).Gupta, K. J., Fernie, A. R., Kaiser, W. M. & van Dongen, J. T. On the origins of nitric oxide. Trends Plant Sci. 16, 160–168 (2011).Mur, L. A. et al. Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5, pls052 (2013).Thomas, D. D. Breathing new life into nitric oxide signaling: A brief overview of the interplay between oxygen and nitric oxide. Redox Biol. 5, 225–33 (2015).Correa-Aragunde, N., Foresi, N. & Lamattina, L. Nitric oxide is a ubiquitous signal for maintaining redox balance in plant cells: regulation of ascorbate peroxidase as a case study. J. Exp. Bot. 66, 2913–2921 (2015).Groβ, F., Durner, J. & Gaupels, F. Nitric oxide, antioxidants and prooxidants in plant defence responses. Front. Plant Sci. 4, 419 (2013).Astier, J. & Lindermayr, C. Nitric oxide-dependent posttranslational modification in plants: an update. Int. J. Mol. Sci. 13, 15193–15208 (2012).Hess, D. T. & Stamler, J. S. Regulation by S-nitrosylation of protein post-translational modification. J. Biol. Chem. 287, 4411–4418 (2012).Guerra, D. D. & Callis, J. Ubiquitin on the move: the ubiquitin modification system plays diverse roles in the regulation of endoplasmic reticulum- and plasma membrane-localized proteins. Plant Physiol. 160, 56–64 (2012).Cantrel, C. et al. Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytol. 189, 415–427 (2011).Lozano-Juste, J. & León, J. Enhanced abscisic acid-mediated responses innia1,2noa1-2 triple mutant impaired in NIA/NR- and AtNOA1-dependent nitric oxide biosynthesis in Arabidopsis. Plant Physiol. 152, 891–903 (2010).Gibbs, D. J. et al. Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors. Mol. Cell 53, 369–379 (2014).Lee, B. H., Henderson, D. A. & Zhu, J. K. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17, 3155–3175 (2005).Kilian, J. et al. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J. 50, 347–363 (2007).Hu, Y., Jiang, L., Wang, F. & Yu, D. Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25, 2907–2924 (2013).Lee, H. G. & Seo, P. J. The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis. Plant J. 82, 962–977 (2015).Kasukabe, Y. et al. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant & Cell Physiol 45, 712–722 (2004).Korn, M., Peterek, S., Mock, H. P., Heyer, A. G. & Hincha, D. K. Heterosis in the freezing tolerance, and sugar and flavonoid contents of crosses between Arabidopsis thaliana accessions of widely varying freezing tolerance. Plant Cell & Environ. 31, 813–827 (2008).Guy, C., Kaplan, F., Kopka, J., Selbig, J. & Hincha, D. K. Metabolomics of temperature stress. Physiol. Plant. 132, 220–235 (2008).Berger, S. et al. Enzymatic and non enzymatic lipid peroxidation in leaf development. Biochem. Biophys. Acta 1533, 266–276 (2001).Yoshida, Y., Umeno, A. & Shichiri, M. Lipid peroxidation biomarkers for evaluating oxidative stress and assessing antioxidant capacity in vivo. J Clin. Biochem. Nutr. 52, 9–16 (2013).Catalá, R. et al. The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation. Plant Cell 26, 3326–3342 (2014).Tähtiharju, S. & Palva, T. Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana. Plant J. 26, 461–470 (2001).Kawamura, Y. & Uemura, M. Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. Plant J. 36, 141–154 (2003).Xin, Z. & Browse, J. Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc. Natl. Acad. Sci. USA 95, 7799–7804 (1998).Nanjo, T. et al. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett. 461, 205–210 (1999).Zuther, E., Schulz, E., Childs, L. H. & Hincha, D. K. Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions. Plant Cell & Environ. 35, 1860–1878 (2012).Alcázar, R., García-Martínez, J. L., Cuevas, J. C., Tiburcio, A. F. & Altabella, T. Overexpression of ADC2 in Arabidopsis induces dwarfism and late-flowering through GA deficiency. Plant J. 43, 425–436 (2005).Alet, A. I. et al. Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. Plant Signal. & Behav. 6, 278–286 (2011).Nägele, T., Stutz, S., Hörmiller, I. I. & Heyer, A. G. Identification of a metabolic bottleneck for cold acclimation in Arabidopsis thaliana. Plant J. 72, 102–114 (2012).Krol, M. et al. Low-temperature stress and photoperiod affect an increased tolerance to photoinhibition in Pinus banksiana seedlings. Canadian Journal of Botany 73, 1119–1127 (1995).Harvaux, M. & Kloppstech, K. The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta 213, 953–966 (2001).Schulz, E., Tohge, T., Zuther, E., Fernie, A. R. & Hincha, D. K. Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Sci. Rep. 6, 34027 (2016).Llorente, F., Oliveros, J. C., Martínez-Zapater, J. M. & Salinas, J. A freezing-sensitive mutant of Arabidopsis, frs1, is a new aba3 allele. Planta 211, 648–655 (2000).Lozano-Juste, J., Colom-Moreno, R. & León, J. In vivo protein tyrosine nitration in Arabidopsis thaliana. J. Exp. Bot. 62, 3501–3517.Gill, S. S. & Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930 (2010).Begara-Morales, J. C. et al. Antioxidant Systems are Regulated by Nitric Oxide-Mediated Post-translational Modifications (NO-PTMs). Front. Plant Sci. 7, 152 (2016).Castillo, M. C. & León, J. Expression of the beta-oxidation gene 3-ketoacyl-CoA thiolase 2 (KAT2) is required for the timely onset of natural and dark-induced leaf senescence in Arabidopsis. J. Exp. Bot. 59, 2171–2179 (2008).Guo, F. Q., Okamoto, M. & Crawford, N. M. Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302, 100–103 (2003).Solfanelli, C., Poggi, A., Loreti, E., Alpi, A. & Perata, P. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol. 140, 637–646 (2006).Seo, M., Jikumaru, Y. & Kamiya, Y. Profiling of Hormones and Related Metabolites in Seed Dormancy and Germination Studies. Meth. Mol. Biol. 773, 99–111 (2011)

    Nitric oxide triggers a transient metabolic reprogramming in Arabidopsis

    Full text link
    [EN] Nitric oxide (NO) regulates plant growth and development as well as responses to stress that enhanced its endogenous production. Arabidopsis plants exposed to a pulse of exogenous NO gas were used for untargeted global metabolomic analyses thus allowing the identification of metabolic processes affected by NO. At early time points after treatment, NO scavenged superoxide anion and induced the nitration and the S-nitrosylation of proteins. These events preceded an extensive though transient metabolic reprogramming at 6 h after NO treatment, which included enhanced levels of polyamines, lipid catabolism and accumulation of phospholipids, chlorophyll breakdown, protein and nucleic acid turnover and increased content of sugars. Accordingly, lipid-related structures such as root cell membranes and leaf cuticle altered their permeability upon NO treatment. Besides, NO-treated plants displayed degradation of starch granules, which is consistent with the increased sugar content observed in the metabolomic survey. The metabolic profile was restored to baseline levels at 24 h post-treatment, thus pointing up the plasticity of plant metabolism in response to nitroxidative stress conditions.This work was supported by grants BIO2011-27526 and BIO2014-56067-P from the Spanish Ministry of Economy and Competitiveness and FEDER funds. We thank support and comments from Danny Alexander (Metabolon Inc., USA) on metabolomic analyses.Leon Ramos, J.; Costa-Broseta, Á.; Castillo López Del Toro, MC. (2016). Nitric oxide triggers a transient metabolic reprogramming in Arabidopsis. Scientific Reports. 6:1-14. doi:10.1038/srep37945S1146Arc, E., Galland, M., Godin, B., Cueff, G. & Rajjou, L. Nitric oxide implication in the control of seed dormancy and germination. Front. Plant Sci. 4, 346 (2013).Beligni, M. V. & Lamattina, L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210, 215–221 (2000).Lozano-Juste, J. & León, J. Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis. Plant Physiol. 156, 1410–1123 (2011).He, Y. et al. Nitric oxide represses the Arabidopsis floral transition. Science 305, 1968–1971 (2004).Tsai, Y. C., Delk, N. A., Chowdhury, N. I. & Braam, J. Arabidopsis potential calcium sensors regulate nitric oxide levels and the transition to flowering. Plant Signal. Behav. 2, 446–454 (2007).Manjunatha, G., Lokesh, V. & Neelwarne, B. Nitric oxide in fruit ripening: trends and opportunities. Biotechnol. Adv. 28, 489–499 (2010).Liu, F. & Guo, F. Q. Nitric oxide deficiency accelerates chlorophyll breakdown and stability loss of thylakoid membranes during dark-induced leaf senescence in Arabidopsis. PLoS One 8(2), e56345 (2013).Du, J. et al. Nitric oxide induces cotyledon senescence involving co-operation of the NES1/MAD1 and EIN2-associated ORE1 signalling pathways in Arabidopsis. J. Exp. Bot. 65, 4051–4063 (2014).Siddiqui, M. H., Al-Whaibi, M. H. & Basalah, M. O. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248, 447–455 (2011).Arasimowicz-Jelonek, M. & Floryszak-Wieczorek, J. Nitric oxide: an effective weapon of the plant or the pathogen? Mol. Plant Pathol. 15, 406–416 (2014).Thomas, D. D. Breathing new life into nitric oxide signaling: A brief overview of the interplay between oxygen and nitric oxide. Redox Biol. 5, 225–33 (2015).Groβ, F., Durner, J. & Gaupels, F. Nitric oxide, antioxidants and prooxidants in plant defence responses. Front. Plant Sci. 4, 419 (2013).Astier, J. & Lindermayr, C. Nitric oxide-dependent posttranslational modification in plants: an update. Int. J. Mol. Sci. 13, 15193–15208 (2012).Hess, D. T. & Stamler, J. S. Regulation by S-nitrosylation of protein post-translational modification. J. Biol. Chem. 287, 4411–4418 (2012).Guerra, D. D. & Callis, J. Ubiquitin on the move: the ubiquitin modification system plays diverse roles in the regulation of endoplasmic reticulum- and plasma membrane-localized proteins. Plant Physiol. 160, 56–64 (2012).Skalska, K., Miller, J. S. & Ledakowicz, S. Trends in NO(x) abatement: a review. Sci. Total Environ. 408, 3976–3989 (2010).Pilegaard, K. Processes regulating nitric oxide emissions from soils. Phil. Transac. Royal Soc. London. Ser. B, Biol. Sci. 368, 20130126 (2013).Jaegle, L., Steinberger, L., Martin, R. V. & Chance, K. Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discus. 130, 407–423 (2005).Gupta, K. J., Fernie, A. R., Kaiser, W. M. & van Dongen, J. T. On the origins of nitric oxide. Trends Plant Sci. 16, 160–168 (2011).Mur, L. A. et al. Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5, pls052 (2013).Correa-Aragunde, N., Foresi, N. & Lamattina, L. Nitric oxide is a ubiquitous signal for maintaining redox balance in plant cells: regulation of ascorbate peroxidase as a case study. J. Exp. Bot. 66, 2913–2921 (2015).Noctor, G., Lelarge-Trouverie, C. & Mhamdi, A. The metabolomics of oxidative stress. Phytochemistry 112, 33–53 (2015).Allan, W. L., Simpson, J. P., Clark, S. M. & Shelp, B. J. Gamma-hydroxybutyrate accumulation in Arabidopsis and tobacco plants is a general response to abiotic stress: putative regulation by redox balance and glyoxylate reductase isoforms. J. Exp. Bot. 59, 2555–2564 (2008).Romero, L. C., Aroca, M. Á., Laureano-Marín, A. M., Moreno, I., García, I. & Gotor, C. Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. Mol. Plant 7, 264–276 (2014).Noctor, G. et al. Glutathione in plants: an integrated overview. Plant Cell Environ. 35, 454–484 (2012).Feussner, I. & Wasternack, C. The lipoxygenase pathway. Ann. Rev. Plant Biol. 53, 275–297 (2002).Green, M. A. & Fry, S. C. Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate. Nature 433, 83–87 (2005).Szarka, A., Tomasskovics, B. & Bánhegyi, G. The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int. J. Mol. Sci. 13, 4458–4483 (2012).Hurlock, A. K., Roston, R. L., Wang, K. & Benning, C. Lipid trafficking in plant cells. Traffic 15, 915–932 (2014).Blokhina, O., Virolainen, E. & Fagerstedt, K. V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91, 179–194 (2003).Yeats, T. H. & Rose, J. K. The formation and function of plant cuticles. Plant Physiol. 163, 5–20 (2013).Lozano-Juste, J. & León, J. Enhanced abscisic acid-mediated responses in nia1nia2noa1-2 triple mutant impaired in NIA/NR- and AtNOA1-dependent nitric oxide biosynthesis in Arabidopsis. Plant Physiol. 152, 891–903 (2010).Hörtensteiner, S. Update on the biochemistry of chlorophyll breakdown. Plant Mol Biol. 82, 505–17 (2013).Pruzinská, A. et al. Chlorophyll breakdown in senescent Arabidopsis leaves: characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol. 139, 52–63 (2005).Hirashima, M., Tanaka, R. & Tanaka, A. Light-independent cell death induced by accumulation of pheophorbide a in Arabidopsis thaliana. Plant Cell Physiol. 50, 719–29 (2009).Zottini, M., Costa, A., De Michele, R., Ruzzene, M., Carimi, F. & Lo Schiavo, F. Salicylic acid activates nitric oxide synthesis in Arabidopsis. J Exp Bot. 58, 1397–1405 (2007).Mainz, E. R. et al. Monitoring intracellular nitric oxide production using microchip electrophoresis and laser-induced fluorescence detection. Analytical Methods 4, 414–420 (2012).Vandelle, E. & Delledonne, M. Peroxynitrite formation and function in plants. Plant Sci. 181, 534–539 (2011).Minocha, R., Majumdar, R. & Minocha, S. C. Polyamines and abiotic stress in plants: a complex relationship. Front. Plant Sci. 5, 175 (2014).Parsons H. T., Yasmin, T. & Fry, S. C. Alternative pathways of dehydroascorbic acid degradation in vitro and in plant cell cultures: novel insights into vitamin C catabolism. Biochem. J. 440, 375–383 (2011).Hou, Q., Ufer, G. & Bartels, D. Lipid signalling in plant responses to abiotic stress. Plant Cell Environ. 39, 1029–4108 (2016).Zhou, X. R., Callahan, D. L., Shrestha, P., Liu, Q., Petrie, J. R. & Singh, S. P. Lipidomic analysis of Arabidopsis seed genetically engineered to contain DHA. Front. Plant Sci. 5, 41 (2014).Pohl, C. H. & Kock, J. L. Oxidized fatty acids as inter-kingdom signaling molecules. Molecules 19, 1273–1285 (2014).Araújo, W. L., Tohge, T., Ishizaki, K., Leaver, C. J. & Fernie, A. R. Protein degradation-an alternative respiratory substrate for stressed plants. Trends Plant Sci. 16, 489–498 (2011).Sakamoto, W. & Takami, T. Nucleases in higher plants and their possible involvement in DNA degradation during leaf senescence. J. Exp. Bot. 65, 3835–3843 (2014).Del Duca, S., Serafini-Fracassini, D. & Cai, G. Senescence and programmed cell death in plants: polyamine action mediated by transglutaminase. Front. Plant Sci. 5, 120 (2014).Franco, M. C. & Estévez, A. G. Tyrosine nitration as mediator of cell death. Cell. Mol. Life Sci. 71, 3939–3950 (2014).Palumbo, A., Fiore, G., Di Cristo, C., Di Cosmo, A. & d’Ischia, M. NMDA receptor stimulation induces temporary alpha-tubulin degradation signalled by nitric oxide-mediated tyrosine nitration in the nervous system of Sepia officinalis. Biochem. Biophys. Res. Commun. 293, 1536–1543 (2002).Wang, Y. Y., Lin, S. Y., Chuang, Y. H., Mao, C. H., Tung, K. C. & Sheu, W. H. Protein nitration is associated with increased proteolysis in skeletal muscle of bile duct ligation-induced cirrhotic rats. Metabolism 59, 468–472 (2010).Castillo, M. C., Lozano-Juste, J., González-Guzmán, M., Rodriguez, L., Rodriguez, P. L. & León, J. Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Sci. Signal. 8(392), ra89 (2015).Blaise, G. A., Gauvin, D., Gangal, M. & Authier, S. Nitric oxide, cell signaling and cell death. Toxicology 208, 177–192 (2005).Brüne, B. Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ. 10, 864–869 (2003).Wang, Y., Chen, C., Loake, G. J. & Chu, C. Nitric oxide: promoter or suppressor of programmed cell death? Prot. Cell 1, 133–142 (2010).Serrano, I., Romero-Puertas, M. C., Sandalio, L. M. & Olmedilla, A. The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. J. Exp. Bot. 66, 2869–2876 (2015).Huang, S., Hill, R. D. & Stasolla, C. Plant hemoglobin participation in cell fate determination. Plant Signal. Behavior 9, e29485 (2014).Maes, M. B., Scharpé, S. & De Meester, I. Dipeptidyl peptidase II (DPPII), a review. Clin. Chim. Acta 380, 31–49 (2007).Gibbs, D. J. et al. Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors. Mol. Cell 53, 369–379 (2014).Kitamura, K. Inhibition of the Arg/N-end rule pathway-mediated proteolysis by dipeptide-mimetic molecules. Amino Acids 48, 235–243 (2016).Duek, P. D., Elmer, M. V., van Oosten, V. R. & Fankhauser C. The degradation of HFR1, a putative bHLH class transcription factor involved in light signaling, is regulated by phosphorylation and requires COP1. Curr Biol. 14, 2296–2301 (2004)

    Cyanobacterial NOS expression improves nitrogen use efficiency, nitrogen-deficiency tolerance and yield in Arabidopsis.

    No full text
    Developing strategies to improve nitrogen (N) use efficiency (NUE) in plants is a challenge to reduce environmental problems linked to over-fertilization. The nitric oxide synthase (NOS) enzyme from the cyanobacteria Synechococcus PCC 7335 (SyNOS) has been recently identified and characterized. SyNOS catalyzes the conversion of arginine to citrulline and nitric oxide (NO), and then approximately 75 % of the produced NO is rapidly oxidized to nitrate by an unusual globin domain in the N-terminus of the enzyme. In this study, we assessed whether SyNOS expression in plants affects N metabolism, NUE and yield. Our results showed that SyNOS-expressing transgenic Arabidopsis plants have greater primary shoot length and shoot branching when grown under N-deficient conditions and higher seed production both under N-sufficient and N-deficient conditions. Moreover, transgenic plants showed significantly increased NUE in both N conditions. Although the uptake of N was not modified in the SyNOS lines, they showed an increase in the assimilation/remobilization of N under conditions of low N availability. In addition, SyNOS lines have greater N-deficiency tolerance compared to control plants. Our results support that SyNOS expression generates a positive effect on N metabolism and seed production in Arabidopsis, and it might be envisaged as a strategy to improve productivity in crops under adverse N environments
    corecore