40 research outputs found

    Improving broadband displacement detection with quantum correlations

    Get PDF
    Interferometers enable ultrasensitive measurement in a wide array of applications from gravitational wave searches to force microscopes. The role of quantum mechanics in the metrological limits of interferometers has a rich history, and a large number of techniques to surpass conventional limits have been proposed. In a typical measurement configuration, the tradeoff between the probe's shot noise (imprecision) and its quantum backaction results in what is known as the standard quantum limit (SQL). In this work we investigate how quantum correlations accessed by modifying the readout of the interferometer can access physics beyond the SQL and improve displacement sensitivity. Specifically, we use an optical cavity to probe the motion of a silicon nitride membrane off mechanical resonance, as one would do in a broadband displacement or force measurement, and observe sensitivity better than the SQL dictates for our quantum efficiency. Our measurement illustrates the core idea behind a technique known as \textit{variational readout}, in which the optical readout quadrature is changed as a function of frequency to improve broadband displacement detection. And more generally our result is a salient example of how correlations can aid sensing in the presence of backaction.Comment: 17 pages, 5 figure

    Lateral Clavicular Autograft for Repair of Reverse Hill-Sachs Defect

    Get PDF
    Posterior dislocations of the shoulder joint can result in an impression fracture over the anteromedial humeral head, termed the reverse Hill-Sachs lesion, the presence of which can contribute to recurrent dislocations. Methods described to repair this defect include using allografts, iliac crest and coracoid process autografts, and bone graft substitutes. We describe a novel technique using the lateral end of the ipsilateral clavicle as an autograft in a 78 year old man with a reverse Hill Sachs lesion. This graft can be harvested through the same incision and does not compromise the stability of the acromioclavicular joint or any future shoulder arthroplasty

    Glenohumeral joint injection: a comparative study of ultrasound and fluoroscopically guided techniques before MR arthrography

    Get PDF
    To assess the variability in accuracy of contrast media introduction, leakage, required time and patient discomfort in four different centres, each using a different image-guided glenohumeral injection technique. Each centre included 25 consecutive patients. The ultrasound-guided anterior (USa) and posterior approach (USp), fluoroscopic-guided anterior (FLa) and posterior (FLp) approach were used. Number of injection attempts, effect of contrast leakage on diagnostic quality, and total room, radiologist and procedure times were measured. Pain was documented with a visual analogue scale (VAS) pain score. Access to the joint was achieved in all patients. A successful first attempt significantly occurred more often with US (94%) than with fluoroscopic guidance (72%). Leakage of contrast medium did not cause interpretative difficulties. With US guidance mean room, procedure and radiologist times were significantly shorter (p < 0.001). The USa approach was rated with the lowest pre- and post-injection VAS scores. The four image-guided injection techniques are successful in injection of contrast material into the glenohumeral joint. US-guided injections and especially the anterior approach are significantly less time consuming, more successful on the first attempt, cause less patient discomfort and obviate the need for radiation and iodine contrast

    EPIdemiology of Surgery-Associated Acute Kidney Injury (EPIS-AKI) : Study protocol for a multicentre, observational trial

    Get PDF
    More than 300 million surgical procedures are performed each year. Acute kidney injury (AKI) is a common complication after major surgery and is associated with adverse short-term and long-term outcomes. However, there is a large variation in the incidence of reported AKI rates. The establishment of an accurate epidemiology of surgery-associated AKI is important for healthcare policy, quality initiatives, clinical trials, as well as for improving guidelines. The objective of the Epidemiology of Surgery-associated Acute Kidney Injury (EPIS-AKI) trial is to prospectively evaluate the epidemiology of AKI after major surgery using the latest Kidney Disease: Improving Global Outcomes (KDIGO) consensus definition of AKI. EPIS-AKI is an international prospective, observational, multicentre cohort study including 10 000 patients undergoing major surgery who are subsequently admitted to the ICU or a similar high dependency unit. The primary endpoint is the incidence of AKI within 72 hours after surgery according to the KDIGO criteria. Secondary endpoints include use of renal replacement therapy (RRT), mortality during ICU and hospital stay, length of ICU and hospital stay and major adverse kidney events (combined endpoint consisting of persistent renal dysfunction, RRT and mortality) at day 90. Further, we will evaluate preoperative and intraoperative risk factors affecting the incidence of postoperative AKI. In an add-on analysis, we will assess urinary biomarkers for early detection of AKI. EPIS-AKI has been approved by the leading Ethics Committee of the Medical Council North Rhine-Westphalia, of the Westphalian Wilhelms-University Münster and the corresponding Ethics Committee at each participating site. Results will be disseminated widely and published in peer-reviewed journals, presented at conferences and used to design further AKI-related trials. Trial registration number NCT04165369

    A dissipative quantum reservoir for microwave light using a mechanical oscillator

    Get PDF
    Engineered dissipation can be used for quantum state preparation. This is achieved with a suitably engineered coupling to a dissipative cold reservoir usually formed by an electromagnetic mode. In the field of cavity electro- and optomechanics, the electromagnetic cavity naturally serves as a cold reservoir for the mechanical mode. Here, we realize the opposite scenario and engineer a mechanical oscillator cooled close to its ground state into a cold dissipative reservoir for microwave photons in a superconducting circuit. By tuning the coupling to this dissipative mechanical reservoir, we demonstrate dynamical backaction control of the microwave field, leading to stimulated emission and maser action. Moreover, the reservoir can function as a useful quantum resource, allowing the implementation of a near-quantum-limited phase-preserving microwave amplifier. Such engineered mechanical dissipation extends the toolbox of quantum manipulation techniques of the microwave field and constitutes a new ingredient for optomechanical protocols.This work was funded by the SNF, the NCCR Quantum Science and Technology (QSIT), and the European Union Seventh Framework Program through iQUOEMS (grant no. 323924). L.D.T. is supported by Marie Curie ITN cQOM (grant no. 290161). T.J.K. acknowledges financial support from an ERC AdG (QuREM). A.N. holds a University Research Fellowship from the Royal Society and acknowledges support from the Winton Programme for the Physics of Sustainability

    Injection of the subacromial-subdeltoid bursa: blind or ultrasound-guided?

    Get PDF
    Contains fulltext : 53255.pdf (publisher's version ) (Open Access)BACKGROUND: Blind injection of the subacromial-sub-deltoid bursa (SSB) for diagnostic purposes (Neer test) or therapeutic purposes (corticosteroid therapy) is frequently used. Poor response to previous blind injection or side effects may be due to a misplaced injection. It is assumed that ultrasound (US)-guided injections are more accurate than blind injections. In a randomized study, we compared the accuracy of blind injection to that of US-guided injection into the SSB. PATIENTS AND METHODS: 20 consecutive patients with impingement syndrome of the shoulder were randomized for blind or US-guided injection in the SSB. Injection was performed either by an experienced orthopedic surgeon or by an experienced musculoskeletal radiologist. A mixture of 1 m'L methylprednisolone acetate, 4 mL prilocaine hydrochloride and 0.02 mL (0.01 mmol) Gadolinium DTPA was injected. Immediately after injection, a 3D-gradient T1-weighted magnetic resonance scan of the shoulder was performed. The location of the injected fluid was independently assessed by 2 radiologists who were blinded as to the injection technique used. RESULTS: The accuracy of blind and US-guided injection was the same. The fluid was injected into the bursa in all cases. INTERPRETATION: Blind injection into the SSB is as reliable as US-guided injection and could therefore be used in daily routine. US-guided injections may offer a useful alternative in difficult cases, such as with changed anatomy postoperatively or when there is no effective clinical outcome
    corecore