98 research outputs found
The Small Unit Cell Reconstructions of SrTiO3 (111)
We analyze the basic structural units of simple reconstructions of the (111)
surface of SrTiO3 using density functional calculations. The prime focus is to
answer three questions: what is the most appropriate functional to use; how
accurate are the energies; what are the dominant low-energy structures and
where do they lie on the surface phase diagram. Using test calculations of
representative small molecules we compare conventional GGA with higher-order
methods such as the TPSS meta-GGA and on-site hybrid methods PBE0 and TPSSh,
the later being the most accurate. There are large effects due to reduction of
the metal d oxygen sp hybridization when using the hybrid methods which are
equivalent to a dynamical GGA+U, which leads to rather substantial improvements
in the atomization energies of simple calibration molecules, even though the
d-electron density for titanium compounds is rather small. By comparing the
errors of the different methods we are able to generate an estimate of the
theoretical error, which is about 0.25eV per 1x1 unit cell, with changes of
0.5-1.0 eV per 1x1 cell with the more accurate method relative to conventional
GGA. An analysis of the plausible structures reveals an unusual low-energy
TiO2-rich configuration with an unexpected distorted trigonal biprismatic
structure. This structure can act as a template for layers of either TiO or
Ti2O3, consistent with experimental results as well as, in principle, Magnelli
phases. The results also suggest that both the fracture surface and the
stoichiometric SrTiO3 (111) surface should spontaneously disproportionate into
SrO and TiO2 rich domains, and show that there are still surprises to be found
for polar oxide surfaces.Comment: 14 pages, 4 Figure
Epitaxial (111) Films of Cu, Ni, and Cu_y_2_3$(0001) for Graphene Growth by Chemical Vapor Deposition
Films of (111)-textured Cu, Ni, and CuNi were evaluated as substrates
for chemical vapor deposition of graphene. A metal thickness of 400 nm to 700
nm was sputtered onto a substrate of AlO(0001) at temperatures
of 250 C to 650 C. The films were then annealed at 1000 C in a tube furnace.
X-ray and electron backscatter diffraction measurements showed all films have
(111) texture but have grains with in-plane orientations differing by
. The in-plane epitaxial relationship for all films was
||. Reactive sputtering of Al in
O before metal deposition resulted in a single in-plane orientation over 97
% of the Ni film but had no significant effect on the Cu grain structure.
Transmission electron microscopy showed a clean Ni/AlO interface,
confirmed the epitaxial relationship, and showed that formation of the
twin grains was associated with features on the AlO
surface. Increasing total pressure and Cu vapor pressure during annealing
decreased the roughness of Cu and and CuNi films. Graphene grown on the
Ni(111) films was more uniform than that grown on polycrystalline Ni/SiO
films, but still showed thickness variations on a much smaller length scale
than the distance between grains
Behavior of molecules and molecular ions near a field emitter
The cold emission of particles from surfaces under intense electric fields is a process which underpins a variety of applications including atom probe tomography (APT), an analytical microscopy technique with near-atomic spatial resolution. Increasingly relying on fast laser pulsing to trigger the emission, APT experiments often incorporate the detection of molecular ions emitted from the specimen, in particular from covalently or ionically bonded materials. Notably, it has been proposed that neutral molecules can also be emitted during this process. However, this remains a contentious issue. To investigate the validity of this hypothesis, a careful review of the literature is combined with the development of new methods to treat experimental APT data, the modeling of ion trajectories, and the application of density-functional theory simulations to derive molecular ion energetics. It is shown that the direct thermal emission of neutral molecules is extremely unlikely. However, neutrals can still be formed in the course of an APT experiment by dissociation of metastable molecular ions
Computational Study of Hippocampal-Septal Theta Rhythm Changes Due to Beta-Amyloid-Altered Ionic Channels
Electroencephagraphy (EEG) of many dementia patients has been characterized by an increase in low frequency field potential oscillations. One of the characteristics of early stage Alzheimer’s disease (AD) is an increase in theta band power (4–7 Hz). However, the mechanism(s) underlying the changes in theta oscillations are still unclear. To address this issue, we investigate the theta band power changes associated with β-Amyloid (Aβ) peptide (one of the main markers of AD) using a computational model, and by mediating the toxicity of hippocampal pyramidal neurons. We use an established biophysical hippocampal CA1-medial septum network model to evaluate four ionic channels in pyramidal neurons, which were demonstrated to be affected by Aβ. They are the L-type Ca2+ channel, delayed rectifying K+ channel, A-type fast-inactivating K+ channel and large-conductance Ca2+-activated K+ channel. Our simulation results demonstrate that only the Aβ inhibited A-type fast-inactivating K+ channel can induce an increase in hippocampo-septal theta band power, while the other channels do not affect theta rhythm. We further deduce that this increased theta band power is due to enhanced synchrony of the pyramidal neurons. Our research may elucidate potential biomarkers and therapeutics for AD. Further investigation will be helpful for better understanding of AD-induced theta rhythm abnormalities and associated cognitive deficits
- …