59 research outputs found

    Serial echocardiographic left ventricular ejection fraction measurements: a tool for detecting thalassemia major patients at risk of cardiac death

    Get PDF
    Cardiac damage remains a major cause of mortality among patients with thalassemia major. The detection of a lower cardiac magnetic resonance T2* (CMR-T2*) signal has been suggested as a powerful predictor of the subsequent development of heart failure. However, the lack of worldwide availability of CMR-T2* facilities prevents its widespread use for follow-up evaluations of cardiac function in thalassemia major patients, warranting the need to assess the utility of other possible procedures.In this setting,the determination of left ventricular ejection fraction (LVEF)offers an accurate and reproducible method for heart function evaluation. These findings suggest a reduction in LVEF≥7%, over time, determined by 2-D echocardiography, may be considered a strong predictive tool for the detection of thalassemia major patients with increased risk of cardiac death. The reduction of LVEF≥7% had higher (84.76%) predictive value. Finally, Kaplan–Meier survival curves of thalassemia major patients with LVEF≥7% showed a statistically significant decreased probability of survival for heart disease (p=0.0022). However, because of limitations related to the study design, such findings should be confirmed in a large long-term prospective clinical trial

    Chaotic Signatures of Heart Rate Variability and Its Power Spectrum in Health, Aging and Heart Failure

    Get PDF
    A paradox regarding the classic power spectral analysis of heart rate variability (HRV) is whether the characteristic high- (HF) and low-frequency (LF) spectral peaks represent stochastic or chaotic phenomena. Resolution of this fundamental issue is key to unraveling the mechanisms of HRV, which is critical to its proper use as a noninvasive marker for cardiac mortality risk assessment and stratification in congestive heart failure (CHF) and other cardiac dysfunctions. However, conventional techniques of nonlinear time series analysis generally lack sufficient sensitivity, specificity and robustness to discriminate chaos from random noise, much less quantify the chaos level. Here, we apply a ‘litmus test’ for heartbeat chaos based on a novel noise titration assay which affords a robust, specific, time-resolved and quantitative measure of the relative chaos level. Noise titration of running short-segment Holter tachograms from healthy subjects revealed circadian-dependent (or sleep/wake-dependent) heartbeat chaos that was linked to the HF component (respiratory sinus arrhythmia). The relative ‘HF chaos’ levels were similar in young and elderly subjects despite proportional age-related decreases in HF and LF power. In contrast, the near-regular heartbeat in CHF patients was primarily nonchaotic except punctuated by undetected ectopic beats and other abnormal beats, causing transient chaos. Such profound circadian-, age- and CHF-dependent changes in the chaotic and spectral characteristics of HRV were accompanied by little changes in approximate entropy, a measure of signal irregularity. The salient chaotic signatures of HRV in these subject groups reveal distinct autonomic, cardiac, respiratory and circadian/sleep-wake mechanisms that distinguish health and aging from CHF

    Heart Rate Variability Dynamics for the Prognosis of Cardiovascular Risk

    Get PDF
    Statistical, spectral, multi-resolution and non-linear methods were applied to heart rate variability (HRV) series linked with classification schemes for the prognosis of cardiovascular risk. A total of 90 HRV records were analyzed: 45 from healthy subjects and 45 from cardiovascular risk patients. A total of 52 features from all the analysis methods were evaluated using standard two-sample Kolmogorov-Smirnov test (KS-test). The results of the statistical procedure provided input to multi-layer perceptron (MLP) neural networks, radial basis function (RBF) neural networks and support vector machines (SVM) for data classification. These schemes showed high performances with both training and test sets and many combinations of features (with a maximum accuracy of 96.67%). Additionally, there was a strong consideration for breathing frequency as a relevant feature in the HRV analysis

    Heart Rate Variability Dynamics for the Prognosis of Cardiovascular Risk

    Get PDF
    Statistical, spectral, multi-resolution and non-linear methods were applied to heart rate variability (HRV) series linked with classification schemes for the prognosis of cardiovascular risk. A total of 90 HRV records were analyzed: 45 from healthy subjects and 45 from cardiovascular risk patients. A total of 52 features from all the analysis methods were evaluated using standard two-sample Kolmogorov-Smirnov test (KS-test). The results of the statistical procedure provided input to multi-layer perceptron (MLP) neural networks, radial basis function (RBF) neural networks and support vector machines (SVM) for data classification. These schemes showed high performances with both training and test sets and many combinations of features (with a maximum accuracy of 96.67%). Additionally, there was a strong consideration for breathing frequency as a relevant feature in the HRV analysis

    Pharmacognostical Sources of Popular Medicine To Treat Alzheimer’s Disease

    Get PDF

    Effect of sildenafil citrate on the cardiovascular system

    No full text
    Sildenafil citrate is a drug commonly used to manage erectile dysfunction. It is designated chemically as 1-[[3-(6,7-dihydro-1-methyl-7-oxo-3-propyl-1H -pyrazolo[4,3-d]pyrimidin-5-yl)-4 ethoxyphenyl] sulfonyl]-4-methylpiperazine citrate (C22H30N6O4 S). It is a highly selective inhibitor of cyclic guanine monophosphate-specific phosphodiesterase type 5. In late March through mid-November 1998, the US Food and Drug Administration (FDA) published a report on 130 confirmed deaths among men (mean age, 64 years) who received prescriptions for sildenafil citrate, a period during which >6 million outpatient prescriptions (representing about 50 million tablets) were dispensed. The US FDA recently reported that significant cardiovascular events, including sudden cardiac death, have occurred in men with erectile dysfunction who were taking sildenafil citrate. These reports have raised concerns that sildenafil citrate may increase the risk of cardiovascular events, particularly fatal arrhythmias, in patients with cardiovascular disease. In the past few years, the cardiac electrophysiological effects of sildenafil citrate have been investigated extensively in both animal and clinical studies. According to extensive data available to date, sildenafil citrate has been shown to pose minimal cardiovascular risks to healthy people taking this drug. Some precautions are needed for patients with cardiovascular diseases. However, the only absolute contraindication for sildenafil citrate is the concurrent use of nitrates. This article is intended to review sildenafil citrate's cardiovascular effects, as well as current debates about its arrhythmogenic effects

    Supplementary Material for: Testosterone Deprivation Aggravates Left-Ventricular Dysfunction in Male Obese Insulin-Resistant Rats via Impairing Cardiac Mitochondrial Function and Dynamics Proteins

    No full text
    <b><i>Background:</i></b> We have previously reported that testosterone deprivation at a very young age accelerated, but did not aggravate, left-ventricular (LV) dysfunction in obese insulin-resistant rats. However, the effects of testosterone deprivation during adulthood on LV function in obese insulin-resistant rats remains unclear. We hypothesized that testosterone deprivation aggravates LV dysfunction and cardiac autonomic imbalance via the impairment of cardiac mitochondrial function and dynamics proteins, a reduction in insulin receptor function, and an increase in apoptosis in obese insulin-resistant rats. <b><i>Methods:</i></b> Male rats were fed on either a normal diet (ND) or a high-fat diet (HFD) for 12 weeks. They were then subdivided into 2 groups: sham operation (NDS, HFS) and orchiectomy (NDO, HFO). Metabolic parameters, blood pressure, heart rate variability (HRV), and LV function were determined at baseline and before and after orchiectomy. Mitochondrial function and dynamics proteins, insulin signaling, and apoptosis were determined 12 weeks postoperatively. <b><i>Results:</i></b> HFS rats exhibited obese insulin resistance, depressed HRV, and LV dysfunction. In HFO rats, systolic blood pressure was increased with more excessive depression of HRV and increased LV dysfunction, compared with HFS rats. These adverse cardiac effects were consistent with markedly increased mitochondrial dysfunction, reduced mitochondrial complex I and III proteins, reduced mitochondrial fusion proteins, and increased apoptosis, compared with HFS rats. However, testosterone deprivation did not lead to any alteration in the insulin-resistant condition in HFO rats, compared with HFS rats. <b><i>Conclusion:</i></b> We concluded that testosterone deprivation during adulthood aggravated the impairment of mitochondrial function, mitochondrial respiratory complex, mitochondrial dynamics proteins, and apoptosis, leading to LV dysfunction in obese insulin-resistant rats
    corecore