178 research outputs found

    Collective dynamics in crystalline polymorphs of ZnCl2_{2}: potential modelling and inelastic neutron scattering study

    Full text link
    We report a phonon density of states measurement of α\alpha-ZnCl2_{2} using the coherent inelastic neutron scattering technique and a lattice dynamical calculation in four crystalline phases of ZnCl2_{2} using a transferable interatomic potential. The model calculations agree reasonably well with the available experimental data on the structures, specific heat, Raman frequencies and their pressure variation in various crystalline phases. The calculated results have been able to provide a fair description of the vibrational as well as the thermodynamic properties of ZnCl2_{2} in all its four phases.Comment: Accepted in J. Phys.: Condens. Matte

    Classification of Chest Diseases using Wavelet Transforms and Transfer Learning

    Full text link
    Chest X-ray scan is a most often used modality by radiologists to diagnose many chest related diseases in their initial stages. The proposed system aids the radiologists in making decision about the diseases found in the scans more efficiently. Our system combines the techniques of image processing for feature enhancement and deep learning for classification among diseases. We have used the ChestX-ray14 database in order to train our deep learning model on the 14 different labeled diseases found in it. The proposed research shows the significant improvement in the results by using wavelet transforms as pre-processing technique.Comment: 8 pages, 4 figures, Presented in International Conference On Medical Imaging And Computer-Aided Diagnosis (MICAD 2020), proceeding will be published with Springer in their "Lecture Notes in Electrical Engineering (LNEE)" (ISSN: 1876-1100

    Tillage impact on soil erosion by water: Discrepancies due to climate and soil characteristics

    Get PDF
    No-tillage (NT) is promoted for soil and water conservation, but research findings on overland flow and soil erosion are inconsistent across different ecosystems, with some studies showing no benefits of NT over conventional tillage (CT). A global literature review was conducted to quantify the impact of NT on water runoff, sediment concentration and soil losses. The objective was to identify the underlying causes of the variability in the performance of NT across different environments. Data from 282 paired NT and CT runoff plots from 41 research studies worldwide were analysed using meta-analysis and principal component analysis (PCA). Sediment concentration and soil losses were 56 and 60% lower under NT than CT, respectively. These tended to be greater under CT than NT on long plots (90% for sediment concentration and 94% for soil losses) and steepest slopes (79 and 77%, respectively). Greater differences in sediment concentration and soil losses between NT and CT were observed in low clay soils and under temperate climates. While on average there were no differences on runoff coefficient, NT decreased runoff coefficient by about 40% compared to CT in mulched soils, under cool climate (5 years. Overall, the results indicated that NT has greater potential to reduce runoff and soil losses in temperate regions where soils of peri-glacial influence are relatively young, moderately weathered and fragile compared to the heavily weathered clayey tropical soils that are well aggregated and less erodible. The results of this study are expected to inform scientists, practitioners and policy makers on the links between land management and soil functioning processes. Policy makers and development implementers will be able to make informed choices of land management techniques for effective NT implementation, for instance by having more mulch input under warm climates

    The atomic structure of large-angle grain boundaries Σ5\Sigma 5 and Σ13\Sigma 13 in YBa2Cu3O7δ{\rm YBa_2Cu_3O_{7-\delta}} and their transport properties

    Full text link
    We present the results of a computer simulation of the atomic structures of large-angle symmetrical tilt grain boundaries (GBs) Σ5\Sigma 5 (misorientation angles \q{36.87}{^{\circ}} and \q{53.13}{^{\circ}}), Σ13\Sigma 13 (misorientation angles \q{22.62}{^{\circ}} and \q{67.38}{^{\circ}}). The critical strain level ϵcrit\epsilon_{crit} criterion (phenomenological criterion) of Chisholm and Pennycook is applied to the computer simulation data to estimate the thickness of the nonsuperconducting layer hn{\rm h_n} enveloping the grain boundaries. The hn{\rm h_n} is estimated also by a bond-valence-sum analysis. We propose that the phenomenological criterion is caused by the change of the bond lengths and valence of atoms in the GB structure on the atomic level. The macro- and micro- approaches become consistent if the ϵcrit\epsilon_{crit} is greater than in earlier papers. It is predicted that the symmetrical tilt GB Σ5\Sigma5 \theta = \q{53.13}{^{\circ}} should demonstrate a largest critical current across the boundary.Comment: 10 pages, 2 figure

    High-Temperature Phonon Spectra of Multiferroic BiFeO3 from Inelastic Neutron Spectroscopy

    Full text link
    We report inelastic neutron scattering measurements of the phonon spectra in a pure powder sample of the multiferroic material BiFeO3. A high-temperature range was covered to unravel the changes in the phonon dynamics across the Neel (T_N ~ 650 K) and Curie (T_C ~ 1100 K) temperatures. Experimental results are accompanied by ab-initio lattice dynamical simulations of phonon density of states to enable microscopic interpretations of the observed data. The calculations reproduce well the observed vibrational features and provide the partial atomic vibrational components. Our results reveal clearly the signature of three different phase transitions both in the diffraction patterns and phonon spectra. The phonon modes are found to be most affected by the transition at the T_C. The spectroscopic evidence for the existence of a different structural modification just below the decomposition limit (T_D ~ 1240 K) is unambiguous indicating strong structural changes that may be related to oxygen vacancies and concomitant Fe3+ to Fe2+ reduction and spin transition

    Ab initio studies of phonon softening and high pressure phase transitions of alpha-quartz SiO2

    Full text link
    Density functional perturbation theory calculations of alpha-quartz using extended norm conserving pseudopotentials have been used to study the elastic properties and phonon dispersion relations along various high symmetry directions as a function of bulk, uniaxial and non-hydrostatic pressure. The computed equation of state, elastic constants and phonon frequencies are found to be in good agreement with available experimental data. A zone boundary (1/3, 1/3, 0) K-point phonon mode becomes soft for pressures above P=32 GPa. Around the same pressure, studies of the Born stability criteria reveal that the structure is mechanically unstable. The phonon and elastic softening are related to the high pressure phase transitions and amorphization of quartz and these studies suggest that the mean transition pressure is lowered under non-hydrostatic conditions. Application of uniaxial pressure, results in a post-quartz crystalline monoclinic C2 structural transition in the vicinity of the K-point instability. This structure, intermediate between quartz and stishovite has two-thirds of the silicon atoms in octahedral coordination while the remaining silicon atoms remain tetrahedrally coordinated. This novel monoclinic C2 polymorph of silica, which is found to be metastable under ambient conditions, is possibly one of the several competing dense forms of silica containing octahedrally coordinated silicon. The possible role of high pressure ferroelastic phases in causing pressure induced amorphization in silica are discussed.Comment: 17 pages, 8 figs., 8 Table
    corecore