13 research outputs found

    Oral administration of polyphenolic compounds from cognac decreases ADP-induced platelet aggregation and reduces chronotropic effect of isoprenaline in rats

    Get PDF
    This study sought to evaluate whether consumption of polyphenol extract from Cognac (CPC) modulates platelet activation and cardiovascular reactivity in rats. Male Wistar rats were treated daily for 4 weeks by intra-gastric gavage receiving CPC at 80 mg/kg/day or vehicle (5 % glucose). Platelet adhesion and aggregation in response to different activators were assessed. Cardiac and vascular reactivity in response to various agonists as well as NO measurement by electron paramagnetic resonance technique were investigated in isolated heart and thoracic aorta. Oral administration of CPC decreased platelet aggregation induced by ADP but not by collagen. CPC did not affect adhesion to collagen. The chronotropic but not the inotropic response to isoprenaline was reduced without alteration of NO production in hearts from CPC-treated rats. CPC treatment did not affect ex vivo relaxation to acetylcholine nor NO content of rat aorta. CPC did not significantly alter the response to phenylephrine in aorta despite the participation of endothelial vasoconstrictor products. In summary, chronic treatment with CPC has no impact on ex vivo vascular and cardiac reactivity; however, it reduced heart work and platelet aggregation. These data suggest the existence of compounds in Cognac that may decrease the risk of coronary thrombosis and protect against some cardiac diseases

    Phosphatidylinositol 3-Kinase and Xanthine Oxidase Regulate Nitric Oxide and Reactive Oxygen Species Productions by Apoptotic Lymphocyte Microparticles in Endothelial Cells

    Get PDF
    Microparticles (MPs) are membrane vesicles released during cell activation and apoptosis. We have previously shown that MPs from apoptotic T cells induce endothelial dysfunction, but the mechanisms implicated are not completely elucidated. In this study, we dissect the pathways involved in endothelial cells with respect to both NO and reactive oxygen species (ROS). Incubation of endothelial cells with MPs decreased NO production that was associated with overexpression and phosphorylation of endothelial NO synthase (eNOS). Also, MPs enhanced expression of caveolin-1 and decreased its phosphorylation. Microparticles enhanced ROS by a mechanism sensitive to xanthine oxidase and P-IκBα inhibitors. PI3K inhibition reduced the effects of MPs on eNOS, but not on caveolin-1, whereas it enhanced the effects of MPs on ROS production. Microparticles stimulated ERK1/2 phosphorylation via a PI3K-depedent mechanism. Inhibition of MEK reversed eNOS phosphorylation but had no effect on ROS production induced by MPs. In vivo injection of MPs in mice impaired endothelial function. In summary, MPs activate pathways related to NO and ROS productions through PI3K, xanthine oxidase, and NF-κB pathways. These data underscore the pleiotropic effects of MPs on NO and ROS, leading to an increase oxidative stress that may account for the deleterious effects of MPs on endothelial function

    Phosphatidylinositol 3-kinase and xanthine oxidase regulate nitric oxide and reactive oxygen species productions by apoptotic lymphocyte microparticles in endothelial cells.

    No full text
    Microparticles (MPs) are membrane vesicles released during cell activation and apoptosis. We have previously shown that MPs from apoptotic T cells induce endothelial dysfunction, but the mechanisms implicated are not completely elucidated. In this study, we dissect the pathways involved in endothelial cells with respect to both NO and reactive oxygen species (ROS). Incubation of endothelial cells with MPs decreased NO production that was associated with overexpression and phosphorylation of endothelial NO synthase (eNOS). Also, MPs enhanced expression of caveolin-1 and decreased its phosphorylation. Microparticles enhanced ROS by a mechanism sensitive to xanthine oxidase and P-IkappaBalpha inhibitors. PI3K inhibition reduced the effects of MPs on eNOS, but not on caveolin-1, whereas it enhanced the effects of MPs on ROS production. Microparticles stimulated ERK1/2 phosphorylation via a PI3K-depedent mechanism. Inhibition of MEK reversed eNOS phosphorylation but had no effect on ROS production induced by MPs. In vivo injection of MPs in mice impaired endothelial function. In summary, MPs activate pathways related to NO and ROS productions through PI3K, xanthine oxidase, and NF-kappaB pathways. These data underscore the pleiotropic effects of MPs on NO and ROS, leading to an increase oxidative stress that may account for the deleterious effects of MPs on endothelial function

    Sonic hedgehog carried by microparticles corrects endothelial injury through nitric oxide release.

    No full text
    Microparticles (MPs) are small fragments generated from the plasma membrane after cell stimulation. Among the candidate proteins harbored by MPs, we recently showed that sonic hedgehog (Shh) is present in MPs generated from activated/apoptotic human T lymphocytes [Martínez et al., Blood (2006) vol. 108, 3012-3020]. We show here that Shh carried by MPs induces nitric oxide (NO) release from endothelial cells, triggers changes in the expression and phosphorylation of enzymes related to the NO pathway, and decreases production of reactive oxygen species. When PI3-kinase and ERK signaling were specifically inhibited, the effects of MPs were reversed. In vivo injection of MPs in mice was also able to improve endothelial function by increasing NO release, and it reversed endothelial dysfunction after ischemia/reperfusion. Silencing the effects of Shh with cyclopamine, a specific inhibitor of Shh, or siRNA, an inhibitor of the Shh receptor Patched, strongly reduced production of NO elicited by MPs. Taken together, we propose that the biological message carried by MPs harboring Shh may represent a new therapeutic approach against endothelial dysfunction during acute severe endothelial injury
    corecore