58 research outputs found

    Astrocytes monitor cerebral perfusion and control systemic circulation to maintain brain blood flow

    Get PDF
    Astrocytes provide neurons with essential metabolic and structural support, modulate neuronal circuit activity and may also function as versatile surveyors of brain milieu, tuned to sense conditions of potential metabolic insufficiency. Here we show that astrocytes detect falling cerebral perfusion pressure and activate CNS autonomic sympathetic control circuits to increase systemic arterial blood pressure and heart rate with the purpose of maintaining brain blood flow and oxygen delivery. Studies conducted in experimental animals (laboratory rats) show that astrocytes respond to acute decreases in brain perfusion with elevations in intracellular [Ca2+]. Blockade of Ca2+-dependent signaling mechanisms in populations of astrocytes that reside alongside CNS sympathetic control circuits prevents compensatory increases in sympathetic nerve activity, heart rate and arterial blood pressure induced by reductions in cerebral perfusion. These data suggest that astrocytes function as intracranial baroreceptors and play an important role in homeostatic control of arterial blood pressure and brain blood flow

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Giant Glial Cell: New Insight Through Mechanism-Based Modeling

    No full text
    The paper describes a detailed mechanism-based model of a tripartite synapse consisting of P- and R-neurons together with a giant glial cell in the ganglia of the medical leech (Hirudo medicinalis), which is a useful object for experimental studies in situ. We describe the two main pathways of the glial cell activation: (1) via IP3 production and Ca2 +  release from the endoplasmic reticulum and (2) via increase of the extracellular potassium concentration, glia depolarization, and opening of voltage-dependent Ca2 +  channels. We suggest that the second pathway is the more significant for establishing the positive feedback in glutamate release that is critical for the self-sustained activity of the postsynaptic neuron. This mechanism differs from the mechanisms of the astrocyte-neuron signaling previously reported

    Unraveling cell processes: interference imaging interwoven with data analysis

    No full text
    The paper presents results on the application of interference microscopy and wavelet-analysis for cell visualization and studies of cell dynamics. We demonstrate that interference imaging of erythrocytes can reveal reorganization of the cytoskeleton and inhomogenity in the distribution of hemoglobin, and that interference imaging of neurons can show intracellular compartmentalization and submembrane structures. We investigate temporal and spatial variations of the refractive index for different cell types: isolated neurons, mast cells and erythrocytes. We show that the refractive dynamical properties differ from cell type to cell type and depend on the cellular compartment. Our results suggest that low frequency variations (0.1–0.6 Hz) result from plasma membrane processes and that higher frequency variations (20–26 Hz) are related to the movement of vesicles. Using double-wavelet analysis, we study the modulation of the 1 Hz rhythm in neurons and reveal its changes under depolarization and hyperpolarization of the plasma membrane. We conclude that interference microscopy combined with wavelet analysis is a useful technique for non-invasive cell studies, cell visualization, and investigation of plasma membrane properties

    In situ monitoring by Raman spectroscopy of lysozyme conformation during "Nanotemplate" induced crystallization

    No full text
    Using Raman spectroscopy and lysozyme, this latter as model protein, we investigate the differences in protein conformation before and after LB nanotemplate-induced crystal nucleation and growth. It was found that the main difference in lysozyme conformation is associated to the higher amount of S-S bonds in lysozyme of LB crystals, probably in C-end of protein, resulting in the higher stiffness of the lysozyme molecules and LB crystal in a whole. Growth in size of LB crystal over time is also accompanied by the formation of S-S bonds. Atomic structure, determined by X-ray diffraction, correlates Raman spectroscopy results confirm the main differences between LB and classical crystals are in terms of water molecules environment previously associated to the increased radiation stability of LB crystals
    • 

    corecore