36 research outputs found

    Intershock observations during STIP intervals 17 and 18

    Get PDF
    The Prognoz-10/Intercosmos satellite (Intershock Project) carried out observations from Earth orbit from 26 April 1985 until 11 November 1985, covering STIP Intervals XVII and XVIII. Data obtained during the systematic measurements in the course of STIP Interval XVII and part of XVIII are presented; i.e., hourly averages of the solar wind velocity, temperature and ion concentration, ion flux changes (10 to the -1 to 10 to the -3 Hz), plasma wave parameters, energetic particles flux, magnetic fields, etc. Special attention is paid to solar wind distrubances causing abrupt and large effects on the shape of the bow shock (i.e., on 2 May 1985 and 14 September 1985). Generally, the observation period was very close to a minimum of solar activity and was quiet without significant interplanetary shocks

    Super fast plasma streams as drivers of transient and anomalous magnetospheric dynamics

    Get PDF
    Abstract. We present multi spacecraft measurements in the magnetosheath (MSH) and in the solar wind (SW) by Interball, Cluster and Polar, demonstrating that coherent structures with magnetosonic Mach number up to 3 – Supermagnetosonic Plasma Streams (SPS) – generate transient and anomalous boundary dynamics, which may cause substantial displacements of the magnetospheric boundaries and the riddling of peripheral boundary layers. In this regard, for the first time, we describe a direct plasma penetration into the flank boundary layers, which is a candidate for being the dominant transport mechanism for disturbed MSH periods. Typically SPS's have a ram pressure exceeding by several times that of the SW and lead to long-range correlations between processes at the bow shock (BS) and at the magnetopause (MP) on one side and between MSH and MP boundary layers on the other side. We demonstrate that SPS's can be observed both near the BS and near the MP and argue that they are often triggered by hot flow anomalies (HFA), which represent local obstacles to the SW flow and can induce the SPS generation as a means for achieving a local flow balance. Finally, we also discuss other causes of SPS's, both SW-induced and intrinsic to the MSH. SPS's appear to be universal means for establishing a new equilibrium between flowing plasmas and may also prove to be important for astrophysical and fusion applications

    КОНБВРУКЦИЯ Π”ΠΠ’Π§Π˜ΠšΠžΠ’ ΠŸΠžΠ’ΠžΠšΠžΠ’ ΠšΠžΠ‘ΠœΠ˜Π§Π•Π‘ΠšΠžΠ™ ΠŸΠ›ΠΠ—ΠœΠ« НА ΠžΠ‘ΠΠžΠ’Π• Π¦Π˜Π›Π˜ΠΠ”Π Π ЀАРАДЕЯ

    Get PDF
    Important tasks of modern space research are the study and continuous observations of the processes of cosmic and meteorological Β«weatherΒ». One of the electronic devices for carrying out such researches is a plasma sensor based on Faraday cup. The purpose of the work was to develop a constructive variant of the Faraday cup with precision sensitive (selective) elements in the form of metal grid microstructures and a four-sector collector, which has no analogues in the world technology.For the formation of grid nickel microstructures, a process has been developed for creating a matrix of nanoporous anodic aluminum oxide by photolithography as a precision shape (template) for depositing nanostructured metal layers. Methods for conducting testing for mechanical (vibrational) and thermocyclic impact that satisfies the requirements for space instruments have been developed.The grid microstructures are formed in a unified technological cycle with the production of ring-holders along the perimeter of the grid, with a square 20 Γ— 20 ΞΌm2Β section of the web and square cells with a size of 1 Γ— 1 mm2. The transparency of each of the grids was more than 90 % for the normal incidence of light. Dimensions of holders and grid microstructures: internal diameters (34, 47, 60) Β± 0.1 mm, external diameters of rings (42, 55, 68) Β± 0.1 mm, respectively. The weight of one grid was less than 50 mg.The test results demonstrated the operability of the developed grid microstructures with multiple thermocyclic actions from –50 to +150 Β°C and vibrational and static overloads specific for space flights. Instruments for plasma measurements in the near of the Earth and in the interplanetary space will comprise six sensors with different angular orientations. This will make it possible to detect ions of cosmic plasma in a solid angle of about 180Β°.Π’Π°ΠΆΠ½Ρ‹ΠΌΠΈ Π·Π°Π΄Π°Ρ‡Π°ΠΌΠΈ соврСмСнных космичСских исслСдований ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Π΅ наблюдСния процСссов космичСской ΠΈ мСтСорологичСской Β«ΠΏΠΎΠ³ΠΎΠ΄Ρ‹Β». Одним ΠΈΠ· элСктронных ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ² для провСдСния Ρ‚Π°ΠΊΠΈΡ… исслСдований являСтся Π΄Π°Ρ‚Ρ‡ΠΈΠΊ ΠΏΠ»Π°Π·ΠΌΡ‹ Π½Π° основС Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€Π° ЀарадСя. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ состояла Π² Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ конструктивного Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€Π° ЀарадСя с ΠΏΡ€Π΅Ρ†ΠΈΠ·ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ (ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ) элСмСнтами Π² Π²ΠΈΠ΄Π΅ мСталличСских сСточных микроструктур ΠΈ чСтырСхсСкторным ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ, Π½Π΅ ΠΈΠΌΠ΅ΡŽΡ‰Π΅Π³ΠΎ Π°Π½Π°Π»ΠΎΠ³ΠΎΠ² Π² ΠΌΠΈΡ€ΠΎΠ²ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ΅.Для формирования сСточных Π½ΠΈΠΊΠ΅Π»Π΅Π²Ρ‹Ρ… микроструктур Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ процСсс создания с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ„ΠΎΡ‚ΠΎΠ»ΠΈΡ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ΠΈΠ· нанопористого Π°Π½ΠΎΠ΄Π½ΠΎΠ³ΠΎ оксида алюминия ΠΊΠ°ΠΊ ΠΏΡ€Π΅Ρ†ΠΈΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ (шаблона) для осаТдСния наноструктурированных мСталличСских слоСв. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ провСдСния тСстовых испытаний Π½Π° мСханичСскиС (Π²ΠΈΠ±Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅) ΠΈ тСрмоцикличСскиС воздСйствия, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ трСбованиям ΠΊ космичСским ΠΏΡ€ΠΈΠ±ΠΎΡ€Π°ΠΌ.Π‘Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ микроструктуры сформированы Π² Π΅Π΄ΠΈΠ½ΠΎΠΌ тСхнологичСском Ρ†ΠΈΠΊΠ»Π΅ с ΠΊΠΎΠ»ΡŒΡ†Π°ΠΌΠΈ-дСрТатСлями ΠΏΠΎ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Ρƒ сСтки, с ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ 20 Γ— 20 ΠΌΠΊΠΌ2 сСчСниСм ΠΏΠΎΠ»ΠΎΡ‚Π½Π° ΠΈ ячСйками Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ 1 Γ— 1 ΠΌΠΌ2. ΠŸΡ€ΠΎΠ·Ρ€Π°Ρ‡Π½ΠΎΡΡ‚ΡŒ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· сСток ΠΏΡ€ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌ ΠΏΠ°Π΄Π΅Π½ΠΈΠΈ свСта составила Π±ΠΎΠ»Π΅Π΅ 90 %. Π“Π°Π±Π°Ρ€ΠΈΡ‚Π½Ρ‹Π΅ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ Π΄Π΅Ρ€ΠΆΠ°Ρ‚Π΅Π»Π΅ΠΉ ΠΈ сСточных микроструктур: Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠ΅ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Ρ‹ (34, 47, 60) Β± 0,1 ΠΌΠΌ, внСшниС Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Ρ‹ ΠΊΠΎΠ»Π΅Ρ† (42, 55, 68) Β± 0,1 ΠΌΠΌ соотвСтствСнно. Масса ΠΎΠ΄Π½ΠΎΠΉ сСтки составила ΠΌΠ΅Π½Π΅Π΅ 50 ΠΌΠ³.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ испытаний продСмонстрировали Ρ€Π°Π±ΠΎΡ‚ΠΎΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Ρ… сСточных микроструктур ΠΏΡ€ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠΊΡ€Π°Ρ‚Π½Ρ‹Ρ… тСрмоцикличСских воздСйствиях ΠΎΡ‚ –50 Π΄ΠΎ +150 Β°Π‘ ΠΈ Π²ΠΈΠ±Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΈ статичСских ΠΏΠ΅Ρ€Π΅Π³Ρ€ΡƒΠ·ΠΊΠ°Ρ…, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… ΠΏΡ€ΠΈ космичСских ΠΏΠΎΠ»Π΅Ρ‚Π°Ρ…. Π’ составС ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ² для провСдСния ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ Π² окрСстности Π—Π΅ΠΌΠ»ΠΈ ΠΈ Π² ΠΌΠ΅ΠΆΠΏΠ»Π°Π½Π΅Ρ‚Π½ΠΎΠΌ пространствС Π±ΡƒΠ΄ΡƒΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΡˆΠ΅ΡΡ‚ΡŒ Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠΎΠ² с Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ ΡƒΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠ΅ΠΉ. Π­Ρ‚ΠΎ обСспСчит Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ фиксирования ΠΈΠΎΠ½ΠΎΠ² космичСской ΠΏΠ»Π°Π·ΠΌΡ‹ Π² тСлСсном ΡƒΠ³Π»Π΅ ΠΎΠΊΠΎΠ»ΠΎ 180Β°
    corecore