12 research outputs found

    Non-equilibrium Superconductivity and Quasiparticle Dynamics studied by Photo Induced Activation of Mm-Wave Absorption (PIAMA)

    Get PDF
    We present a study of non-equilibrium superconductivity in DyBa2Cu3O7-d using photo induced activation of mm-wave absorption (PIAMA). We monitor the time evolution of the thin film transmissivity at 5 cm-1 subject to pulsed infrared radiation. In addition to a positive bolometric signal we observe a second, faster, decay with a sign opposite to the bolometric signal for T>40 K. We attribute this to the unusual properties of quasi-particles residing near the nodes of an unconventional superconductor, resulting in a strong enhancement of the recombination time.Comment: 4 pages, REVTeX, Submitted to Phys. Rev. Letter

    Time-Resolved Photoresponse Measurements of the Electrical Conductivity of the Quasi-Two-Dimensional Organic Superconductor ÎČ-(BEDT-TTF) 2

    No full text
    Time-resolved photoresponses in resistance have been measured following the nanosecond laser pulse excitation for the quasi-two-dimensional organic superconductors of hydrogenated and deuterated ÎČ-(BEDT-TTF)2I3 [BEDT-TTF = bis-(ethylenedithio)tetrathiafulvalene], which show two different superconducting states with high-Tc and low-Tc at temperatures near the critical temperatures. A transient increase of the resistance is induced by photoirradiation at all the temperatures, but a marked temperature dependence of the decay time is observed at temperatures close to the high-Tc phase transition temperature; the decay rate becomes faster and then becomes constant in both compounds, as the temperature decreases across the high-Tc phase transition temperature. The temperature dependence of the photoresponse intensity is different from the one expected from the bolometric effects, indicating the presence of the nonbolometric photoresponse. A possible mechanism explaining the photoresponse of the conductivity is discussed, based on the isotope effect on the photoresponse. A comparison is also made between ÎČ-(BEDT-TTF)2I3 and Îș-(BEDT-TTF)2Cu[N(CN)2]Br for the transient photoresponse in resistance at temperatures across the metal-superconductor phase transition temperature

    Fluidic and mechanical thermal control devices

    Get PDF
    In recent years, intensive studies on thermal control devices have been conducted for the thermal management of electronics and computers as well as for applications in energy conversion, chemistry, sensors, buildings, and outer space. Conventional cooling or heating techniques realized using traditional thermal resistors and capacitors cannot meet the thermal requirements of advanced systems. Therefore, new thermal control devices are being investigated to satisfy these requirements. These devices include thermal diodes, thermal switches, thermal regulators, and thermal transistors, all of which manage heat in a manner analogous to how electronic devices and circuits control electricity. To design or apply these novel devices as well as thermal control principles, this paper presents a systematic and comprehensive review of the state-of-the-art of fluidic and mechanical thermal control devices that have already been implemented in various applications for different size scales and temperature ranges. Operation principles, working parameters, and limitations are discussed and the most important features for a particular device are identified
    corecore