959 research outputs found

    Hall effect in laser ablated Co_2(Mn,Fe)Si thin films

    Full text link
    Pulsed laser deposition was employed to grow thin films of the Heusler compounds Co_2MnSi and Co_2FeSi. Epitaxial growth was realized both directly on MgO (100) and on a Cr or Fe buffer layer. Structural analysis by x-ray and electron diffraction shows for both materials the ordered L2_1 structure. Bulk magnetization was determined with a SQUID magnetometer. The values agree with the Slater-Pauling rule for half-metallic Heusler compounds. On the films grown directly on the substrate measurements of the Hall effect have been performed. The normal Hall effect is nearly temperature independent and points towards a compensated Fermi surface. The anomalous contribution is found to be dominated by skew scattering. A remarkable sign change of both normal and anomalous Hall coefficients is observed on changing the valence electron count from 29 (Mn) to 30 (Fe).Comment: 9 pages, 6 figures submitted to J Phys

    Local probing of ionic diffusion by electrochemical strain microscopy: spatial resolution and signal formation mechanisms

    Full text link
    Electrochemical insertion-deintercalation reactions are typically associated with significant change of molar volume of the host compound. This strong coupling between ionic currents and strains underpins image formation mechanisms in electrochemical strain microscopy (ESM), and allows exploring the tip-induced electrochemical processes locally. Here we analyze the signal formation mechanism in ESM, and develop the analytical description of operation in frequency and time domains. The ESM spectroscopic modes are compared to classical electrochemical methods including potentiostatic and galvanostatic intermittent titration (PITT and GITT), and electrochemical impedance spectroscopy (EIS). This analysis illustrates the feasibility of spatially resolved studies of Li-ion dynamics on the sub-10 nanometer level using electromechanical detection.Comment: 49 pages, 17 figures, 4 tables, 3 appendices, to be submitted to J. Appl. Phys

    Diversity and habitat characteristics of macrozoobenthos in the mangrove forest of Lubuk Kertang Village, North Sumatra

    Get PDF
    Mangrove plays an important role in coastal ecosystems including ecological, social, and economic aspects. This study aimed to determine the diversity of macrozoobenthos and water quality based on diversity index (H?), similarity Index (E), and dominance index (D) in the mangrove of Lubuk Kertang Village North Sumatra, Indonesia. The samples of macrozoobenthos (biological parameter) and water quality (physical and chemical parameters) were collected from fifteen plots in three different stations. Macrozoobenthos were collected in 1 m ? 1 m transect in the mangrove forest. The biota was taken by using a shovel, inserted into a plastic bag, and identified. Results showed that eight species of macrozoobenthos were found and classified into three classes of Gastropod, Bivalvia, and Malacostraca. The highest diversity index (H?) of macrozoobenthos was found at Station II (2.39), the highest evenness index (E) was located at Station I (0.54), and the highest dominance index (D) was found at Station II (0.34). Principal component analysis (PCA) was used to determine the habitat characteristics of macrozoobenthos. PCA confirmed that station III was a habitat with suitable characteristics for the life of macrozoobenthos indicating the negative axis. The present study suggested four parameters namely salinity, clay temperature, and dissolved oxygen that should be preserved to support the survival of macrozoobenthos in the mangrove forests. ? 2018, Society for Indonesian Biodiversity. All rights reservedpublishersversionPeer reviewe

    A short-term in vivo model for giant cell tumor of bone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because of the lack of suitable <it>in vivo </it>models of giant cell tumor of bone (GCT), little is known about its underlying fundamental pro-tumoral events, such as tumor growth, invasion, angiogenesis and metastasis. There is no existing cell line that contains all the cell and tissue tumor components of GCT and thus <it>in vitro </it>testing of anti-tumor agents on GCT is not possible. In this study we have characterized a new method of growing a GCT tumor on a chick chorio-allantoic membrane (CAM) for this purpose.</p> <p>Methods</p> <p>Fresh tumor tissue was obtained from 10 patients and homogenized. The suspension was grafted onto the CAM at day 10 of development. The growth process was monitored by daily observation and photo documentation using <it>in vivo </it>biomicroscopy. After 6 days, samples were fixed and further analyzed using standard histology (hematoxylin and eosin stains), Ki67 staining and fluorescence <it>in situ </it>hybridization (FISH).</p> <p>Results</p> <p>The suspension of all 10 patients formed solid tumors when grafted on the CAM. <it>In vivo </it>microscopy and standard histology revealed a rich vascularization of the tumors. The tumors were composed of the typical components of GCT, including (CD51+/CD68+) multinucleated giant cells whichwere generally less numerous and contained fewer nuclei than in the original tumors. Ki67 staining revealed a very low proliferation rate. The FISH demonstrated that the tumors were composed of human cells interspersed with chick-derived capillaries.</p> <p>Conclusions</p> <p>A reliable protocol for grafting of human GCT onto the chick chorio-allantoic membrane is established. This is the first <it>in vivo </it>model for giant cell tumors of bone which opens new perspectives to study this disease and to test new therapeutical agents.</p

    Watching Domains Grow: In-situ studies of polarization switching by combined Scanning Probe and Scanning Transmission Electron Microscopy

    Full text link
    Ferroelectric domain nucleation and growth in multiferroic BiFeO3 films is observed directly by applying a local electric field with a conductive tip inside a scanning transmission electron microscope. The nucleation and growth of a ferroelastic domain and its interaction with pre-existing 71^{\circ} domain walls are observed and compared with the results of phase-field modeling. In particular, a preferential nucleation site and direction-dependent pinning of domain walls is observed due to slow kinetics of metastable switching in the sample without a bottom electrode. These in-situ spatially-resolved observations of a first-order bias-induced phase transition reveal the mesoscopic mechanisms underpinning functionality of a wide range of multiferroic materials
    • …
    corecore