50,385 research outputs found

    Sparse Coding Predicts Optic Flow Specificities of Zebrafish Pretectal Neurons

    Full text link
    Zebrafish pretectal neurons exhibit specificities for large-field optic flow patterns associated with rotatory or translatory body motion. We investigate the hypothesis that these specificities reflect the input statistics of natural optic flow. Realistic motion sequences were generated using computer graphics simulating self-motion in an underwater scene. Local retinal motion was estimated with a motion detector and encoded in four populations of directionally tuned retinal ganglion cells, represented as two signed input variables. This activity was then used as input into one of two learning networks: a sparse coding network (competitive learning) and backpropagation network (supervised learning). Both simulations develop specificities for optic flow which are comparable to those found in a neurophysiological study (Kubo et al. 2014), and relative frequencies of the various neuronal responses are best modeled by the sparse coding approach. We conclude that the optic flow neurons in the zebrafish pretectum do reflect the optic flow statistics. The predicted vectorial receptive fields show typical optic flow fields but also "Gabor" and dipole-shaped patterns that likely reflect difference fields needed for reconstruction by linear superposition.Comment: Published Conference Paper from ICANN 2018, Rhode

    Monte Carlo Simulation of the Three-dimensional Ising Spin Glass

    Full text link
    We study the 3D Edwards-Anderson model with binary interactions by Monte Carlo simulations. Direct evidence of finite-size scaling is provided, and the universal finite-size scaling functions are determined. Using an iterative extrapolation procedure, Monte Carlo data are extrapolated to infinite volume up to correlation length \xi = 140. The infinite volume data are consistent with both a continuous phase transition at finite temperature and an essential singularity at finite temperature. An essential singularity at zero temperature is excluded.Comment: 5 pages, 6 figures. Proceedings of the Workshop "Computer Simulation Studies in Condensed Matter Physics XII", Eds. D.P. Landau, S.P. Lewis, and H.B. Schuettler, (Springer Verlag, Heidelberg, Berlin, 1999

    Heavy Quarkonium in a weakly-coupled quark-gluon plasma below the melting temperature

    Get PDF
    We calculate the heavy quarkonium energy levels and decay widths in a quark-gluon plasma, whose temperature T and screening mass m_D satisfy the hierarchy m alpha_s >> T >> m alpha_s^2 >> m_D (m being the heavy-quark mass), at order m alpha_s^5. We first sequentially integrate out the scales m, m alpha_s and T, and, next, we carry out the calculations in the resulting effective theory using techniques of integration by regions. A collinear region is identified, which contributes at this order. We also discuss the implications of our results concerning heavy quarkonium suppression in heavy ion collisions.Comment: 25 pages, 2 figure

    Fatty-acid uptake in prostate cancer cells using dynamic microfluidic raman technology

    Get PDF
    It is known that intake of dietary fatty acid (FA) is strongly correlated with prostate cancer progression but is highly dependent on the type of FAs. High levels of palmitic acid (PA) or arachidonic acid (AA) can stimulate the progression of cancer. In this study, a unique experimental set-up consisting of a Raman microscope, coupled with a commercial shear-flow microfluidic system is used to monitor fatty acid uptake by prostate cancer (PC-3) cells in real-time at the single cell level. Uptake of deuterated PA, deuterated AA, and the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were monitored using this new system, while complementary flow cytometry experiments using Nile red staining, were also conducted for the validation of the cellular lipid uptake. Using this novel experimental system, we show that DHA and EPA have inhibitory effects on the uptake of PA and AA by PC-3 cells
    corecore