22 research outputs found
On separable Fokker-Planck equations with a constant diagonal diffusion matrix
We classify (1+3)-dimensional Fokker-Planck equations with a constant
diagonal diffusion matrix that are solvable by the method of separation of
variables. As a result, we get possible forms of the drift coefficients
providing separability of the
corresponding Fokker-Planck equations and carry out variable separation in the
latter. It is established, in particular, that the necessary condition for the
Fokker-Planck equation to be separable is that the drift coefficients must be linear. We also find the necessary condition for
R-separability of the Fokker-Planck equation. Furthermore, exact solutions of
the Fokker-Planck equation with separated variables are constructedComment: 20 pages, LaTe
Exact travelling wave solutions of a beam equation
In this paper we make a full analysis of the symmetry reductions of a beam equation by using
the classical Lie method of infinitesimals and the nonclassical method. We consider travelling wave
reductions depending on the form of an arbitrary function. We have found several new classes
of solutions that have not been considered before: solutions expressed in terms of Jacobi elliptic
functions, Wadati solitons and compactons. Several classes of coherent structures are displayed by
some of the solutions: kinks, solitons, two humps compactons.17 página
Reactive Oxygen Species Production by Forward and Reverse Electron Fluxes in the Mitochondrial Respiratory Chain
Reactive oxygen species (ROS) produced in the mitochondrial respiratory chain (RC) are primary signals that modulate cellular adaptation to environment, and are also destructive factors that damage cells under the conditions of hypoxia/reoxygenation relevant for various systemic diseases or transplantation. The important role of ROS in cell survival requires detailed investigation of mechanism and determinants of ROS production. To perform such an investigation we extended our rule-based model of complex III in order to account for electron transport in the whole RC coupled to proton translocation, transmembrane electrochemical potential generation, TCA cycle reactions, and substrate transport to mitochondria. It fits respiratory electron fluxes measured in rat brain mitochondria fueled by succinate or pyruvate and malate, and the dynamics of NAD+ reduction by reverse electron transport from succinate through complex I. The fitting of measured characteristics gave an insight into the mechanism of underlying processes governing the formation of free radicals that can transfer an unpaired electron to oxygen-producing superoxide and thus can initiate the generation of ROS. Our analysis revealed an association of ROS production with levels of specific radicals of individual electron transporters and their combinations in species of complexes I and III. It was found that the phenomenon of bistability, revealed previously as a property of complex III, remains valid for the whole RC. The conditions for switching to a state with a high content of free radicals in complex III were predicted based on theoretical analysis and were confirmed experimentally. These findings provide a new insight into the mechanisms of ROS production in RC