64 research outputs found

    Data Acquisition and Management in the Calibration Processes of the CMS Barrel Muon Alignment System

    Get PDF
    In order to be able to match correctly the track elements produced by a muon in the Tracker and the Muon System of the CMS experiment [1] the mutual alignment precision between the Tracker and the Barrel Muon System must be no worse than 100-400 micrometers depending on the radial distance of the muon chambers from the Tracker. To fulfill this requirement an alignment system had to be designed. This system contains subsystems for determining the positions of the barrel and endcap chambers while a third one connects these two to the Tracker. Since the Barrel muon chambers are embedded into the magnet yoke of the experiment a nonconventional alignment method had to be developed. In this paper we restrict ourselves to the Barrel Alignment System and the calibration methods of its components

    Results and Consequences of Magnet Test and Cosmic Challenge of the CMS Barrel Muon Alignment System

    Get PDF
    In the last year - as part of the first test of the CMS experiment at CERN [1] called Magnet Test and Cosmic Challenge (MTCC) - about 25% of the barrel muon position monitoring system was built and operated. The configuration enabled us to test all the elements of the system and its function in real conditions. The correct operation of the system has been demonstrated. About 500 full measurement cycles have been recorded. In the paper the setup –including the read-out and control - is described and the first preliminary results are presented

    The network of photodetectors and diode lasers of the CMS Link alignment system

    Get PDF
    The central feature of the CMS Link alignment system is a network of Amorphous Silicon Position Detectors distributed throughout the muon spectrometer that are connected by multiple laser lines. The data collected during the years from 2008 to 2015 is presented confirming an outstanding performance of the photo sensors during more than seven years of operation. Details of the photo sensor readout of the laser signals are presented. The mechanical motions of the CMS detector are monitored using these photosensors and good agreement with distance sensors is obtained

    Heterogeneous dehalogenation of arylhalides in the presence of ionic liquids

    No full text
    Dehydrohalogenation of haloaromatics in ionic liquids derived from ethylmethylimidazolium or similar salts has been performed using Pd-C, Pd(OAc)2 and other catalysts using formate salts as a hydrogen source. In the ionic liquid [emim][BF4], chlorobenzene was dehalogenated by up to 40%, bromobenzene up to 25% and iodobenzene up to 41% in 2 h. Reactions in the absence of the ionic liquid were also performed

    Completion of the Muon Barrel Alignment System and its integration into the CMS detector environment

    No full text
    v During the past years our group has built, calibrated, and finally installed all the components of the Muon Barrel Alignment System for the CMS experiment. This paper covers the results of the hardware commissioning, the full system setup and the connection to the CMS Detector Control System (DCS). The step-by-step operation of the system is discussed: from collecting the analog video signals and preprocessing the observed LED images, through controlling the front-end PCs, to forming the measurement results for the CMS DCS. The first measurement results and the initial experiences of the communication with the DCS are also discussed

    Environmental impacts of tilapia fish cage aquaculture on water physico-chemical parameters of Lake Kivu, Democratic Republic of the Congo

    Get PDF
    In Africa, cage aquaculture has been growing due to its potential to address food insecurity concerns, provide livelihoods, and contribute to local economies. However, there is a need for continued research on the sustainability and potential ecological effects of cage aquaculture in African lakes and reservoirs. Even with an adequate amount of water, lakes and reservoirs cannot provide ecosystem services if their water quality is not properly managed. The current study on Lake Kivu, DRC focuses on understanding the effects of tilapia cage aquaculture on selected water quality physico-chemical parameters in the Bukavu sub-basin, DRC. The research was conducted in both caged and uncaged sampling stations, on the spatial and temporal scale from April to September 2023 at three bays serving as sampling stations: two caged (Ndendere, Honga) and one non-caged (Nyofu). Some physico-chemical parameters were measured in situ, whereas chlorophyll a and nutrients analysis were performed at the Institut Supérieur Pédagogique (I.S.P) laboratory in Bukavu. The parameters were used to calculate three indices water quality indices: the water quality index (WQI) to classify the water quality at the stations, the organic pollution index (OPI) to determine the level of organic pollution, the Carlson's Trophic Status Index (CTSI) to classify the trophic state of the stations. Chlorophyll a concentration was a measure of algal biomass. All physico-chemical parameters, apart from DO, ammonium and temperature showed no significant differences among stations and depths. Interaction between stations and between seasons was only observed on turbidity. The WQI for all the sampling stations ranged from medium to good quality (51–90). The OPI for all stations showed minimal level of pollution (4.6–5.0) hence lake's water still organically unpolluted. CTSI results indicated the sampling stations are in a eutrophic state (50 to 70). Fish cage aquaculture does not yet pose harm to the water quality of the two Lake Kivu stations under consideration, according to the study's findings. However with the anticipated growth of cage fish farming activities to meet the rising fish demand, continuous monitoring of water quality in the Lake should be done to inform management decisions and for sustainable aquaculture

    Table_1_Environmental impacts of tilapia fish cage aquaculture on water physico-chemical parameters of Lake Kivu, Democratic Republic of the Congo.docx

    No full text
    In Africa, cage aquaculture has been growing due to its potential to address food insecurity concerns, provide livelihoods, and contribute to local economies. However, there is a need for continued research on the sustainability and potential ecological effects of cage aquaculture in African lakes and reservoirs. Even with an adequate amount of water, lakes and reservoirs cannot provide ecosystem services if their water quality is not properly managed. The current study on Lake Kivu, DRC focuses on understanding the effects of tilapia cage aquaculture on selected water quality physico-chemical parameters in the Bukavu sub-basin, DRC. The research was conducted in both caged and uncaged sampling stations, on the spatial and temporal scale from April to September 2023 at three bays serving as sampling stations: two caged (Ndendere, Honga) and one non-caged (Nyofu). Some physico-chemical parameters were measured in situ, whereas chlorophyll a and nutrients analysis were performed at the Institut Supérieur Pédagogique (I.S.P) laboratory in Bukavu. The parameters were used to calculate three indices water quality indices: the water quality index (WQI) to classify the water quality at the stations, the organic pollution index (OPI) to determine the level of organic pollution, the Carlson's Trophic Status Index (CTSI) to classify the trophic state of the stations. Chlorophyll a concentration was a measure of algal biomass. All physico-chemical parameters, apart from DO, ammonium and temperature showed no significant differences among stations and depths. Interaction between stations and between seasons was only observed on turbidity. The WQI for all the sampling stations ranged from medium to good quality (51–90). The OPI for all stations showed minimal level of pollution (4.6–5.0) hence lake's water still organically unpolluted. CTSI results indicated the sampling stations are in a eutrophic state (50 to 70). Fish cage aquaculture does not yet pose harm to the water quality of the two Lake Kivu stations under consideration, according to the study's findings. However with the anticipated growth of cage fish farming activities to meet the rising fish demand, continuous monitoring of water quality in the Lake should be done to inform management decisions and for sustainable aquaculture.</p
    corecore