134 research outputs found

    Time-resolved photoelectron spectroscopy of proton transfer in the ground state of chloromalonaldehyde: Wave-packet dynamics on effective potential surfaces of reduced dimensionality

    Get PDF
    We report on a simple but widely useful method for obtaining time-independent potential surfaces of reduced dimensionality wherein the coupling between reaction and substrate modes is embedded by averaging over an ensemble of classical trajectories. While these classically averaged potentials with their reduced dimensionality should be useful whenever a separation between reaction and substrate modes is meaningful, their use brings about significant simplification in studies of time-resolved photoelectron spectra in polyatomic systems where full-dimensional studies of skeletal and photoelectron dynamics can be prohibitive. Here we report on the use of these effective potentials in the studies of dump-probe photoelectron spectra of intramolecular proton transfer in chloromalonaldehyde. In these applications the effective potentials should provide a more realistic description of proton-substrate couplings than the sudden or adiabatic approximations commonly employed in studies of proton transfer. The resulting time-dependent photoelectron signals, obtained here assuming a constant value of the photoelectron matrix element for ionization of the wave packet, are seen to track the proton transfer

    Real-time observation of intramolecular proton transfer in the electronic ground state of chloromalonaldehyde: An ab initio study of time-resolved photoelectron spectra

    Get PDF
    The authors report on studies of time-resolved photoelectron spectra of intramolecular proton transfer in the ground state of chloromalonaldehyde, employing ab initio photoionization matrix elements and effective potential surfaces of reduced dimensionality, wherein the couplings of proton motion to the other molecular vibrational modes are embedded by averaging over classical trajectories. In the simulations, population is transferred from the vibrational ground state to vibrationally hot wave packets by pumping to an excited electronic state and dumping with a time-delayed pulse. These pump-dump-probe simulations demonstrate that the time-resolved photoelectron spectra track proton transfer in the electronic ground state well and, furthermore, that the geometry dependence of the matrix elements enhances the tracking compared with signals obtained with the Condon approximation. Photoelectron kinetic energy distributions arising from wave packets localized in different basins are also distinguishable and could be understood, as expected, on the basis of the strength of the optical couplings in different regions of the ground state potential surface and the Franck-Condon overlaps of the ground state wave packets with the vibrational eigenstates of the ion potential surface

    A gauge invariant study of the monopole condensation in non Abelian lattice gauge theories

    Get PDF
    We investigate the Abelian monopole condensation in finite temperature SU(2) and SU(3) pure lattice gauge theories. To this end we introduce a gauge invariant disorder parameter built up in terms of the lattice Schr\"odinger functional. Our numerical results show that the disorder parameter is different from zero and Abelian monopole condense in the confined phase. On the other hand our numerical data suggest that the disorder parameter tends to zero, in the thermodynamic limit, when the gauge coupling constant approaches the critical deconfinement value. In the case of SU(3) we also compare the different kinds of Abelian monopoles which can be defined according to the choice of the Abelian subgroups.Comment: 18 pages, 7 figures, LaTe

    Matter degrees of freedom and string breaking in Abelian projected quenched SU(2) QCD

    Get PDF
    In the Abelian projection the Yang--Mills theory contains Abelian gauge fields (diagonal degrees of freedom) and the Abelian matter fields (off-diagonal degrees) described by a complicated action. The matter fields are essential for the breaking of the adjoint string. We obtain numerically the effective action of the Abelian gauge and the Abelian matter fields in quenched SU(2) QCD and show that the Abelian matter fields provide an essential contribution to the total action even in the infrared region. We also observe the breaking of an Abelian analog of the adjoint string using Abelian operators. We show that the adjoint string tension is dominated by the Abelian and the monopole contributions similarly to the case of the fundamental particles. We conclude that the adjoint string breaking can successfully be described in the Abelian projection formalism.Comment: 16 pages, 10 figures, 2 table

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)
    corecore