292 research outputs found

    The Dielectric Constant of Ionic Solutions: A Field-Theory Approach

    Full text link
    We study the variation of the dielectric response of a dielectric liquid (e.g. water) when a salt is added to the solution. Employing field-theoretical methods we expand the Gibbs free-energy to first order in a loop expansion and calculate self-consistently the dielectric constant. We predict analytically the dielectric decrement which depends on the ionic strength in a complex way. Furthermore, a qualitative description of the hydration shell is found and is characterized by a single length scale. Our prediction fits rather well a large range of concentrations for different salts using only one fit parameter related to the size of ions and dipoles.Comment: 5 pages, 2 figure

    Electrostatic Interactions of Asymmetrically Charged Membranes

    Full text link
    We predict the nature (attractive or repulsive) and range (exponentially screened or long-range power law) of the electrostatic interactions of oppositely charged and planar plates as a function of the salt concentration and surface charge densities (whose absolute magnitudes are not necessarily equal). An analytical expression for the crossover between attractive and repulsive pressure is obtained as a function of the salt concentration. This condition reduces to the high-salt limit of Parsegian and Gingell where the interaction is exponentially screened and to the zero salt limit of Lau and Pincus in which the important length scales are the inter-plate separation and the Gouy-Chapman length. In the regime of low salt and high surface charges we predict - for any ratio of the charges on the surfaces - that the attractive pressure is long-ranged as a function of the spacing. The attractive pressure is related to the decrease in counter-ion concentration as the inter-plate distance is decreased. Our theory predicts several scaling regimes with different scaling expressions for the pressure as function of salinity and surface charge densities. The pressure predictions can be related to surface force experiments of oppositely charged surfaces that are prepared by coating one of the mica surfaces with an oppositely charged polyelectrolyte

    Attractive instability of oppositely charged membranes induced by charge density fluctuations

    Full text link
    We predict the conditions under which two oppositely charged membranes show a dynamic, attractive instability. Two layers with unequal charges of opposite sign can repel or be stable when in close proximity. However, dynamic charge density fluctuations can induce an attractive instability and thus facilitate fusion. We predict the dominant instability modes and timescales and show how these are controlled by the relative charge and membrane viscosities. These dynamic instabilities may be the precursors of membrane fusion in systems where artificial vesicles are engulfed by biological cells of opposite charge

    Statistical mechanics of budget-constrained auctions

    Full text link
    Finding the optimal assignment in budget-constrained auctions is a combinatorial optimization problem with many important applications, a notable example being the sale of advertisement space by search engines (in this context the problem is often referred to as the off-line AdWords problem). Based on the cavity method of statistical mechanics, we introduce a message passing algorithm that is capable of solving efficiently random instances of the problem extracted from a natural distribution, and we derive from its properties the phase diagram of the problem. As the control parameter (average value of the budgets) is varied, we find two phase transitions delimiting a region in which long-range correlations arise.Comment: Minor revisio

    Interfaces of Modulated Phases

    Full text link
    Numerically minimizing a continuous free-energy functional which yields several modulated phases, we obtain the order-parameter profiles and interfacial free energies of symmetric and non-symmetric tilt boundaries within the lamellar phase, and of interfaces between coexisting lamellar, hexagonal, and disordered phases. Our findings agree well with chevron, omega, and T-junction tilt-boundary morphologies observed in diblock copolymers and magnetic garnet films.Comment: 4 page

    The Phase Behavior of Mixed Lipid Membranes in Presence of the Rippled Phase

    Full text link
    We propose a model describing liquid-solid phase coexistence in mixed lipid membranes by including explicitly the occurrence of a rippled phase. For a single component membrane, we employ a previous model in which the membrane thickness is used as an order parameter. As function of temperature, this model properly accounts for the phase behavior of the three possible membrane phases: solid, liquid and the rippled phase. Our primary aim is to explore extensions of this model to binary lipid mixtures by considering the composition dependence of important model parameters. The obtained phase diagrams show various liquid, solid and rippled phase coexistence regions, and are in quantitative agreement with the experimental ones for some specific lipid mixtures.Comment: 8pages, 5figure

    Topography and instability of monolayers near domain boundaries

    Full text link
    We theoretically study the topography of a biphasic surfactant monolayer in the vicinity of domain boundaries. The differing elastic properties of the two phases generally lead to a nonflat topography of ``mesas'', where domains of one phase are elevated with respect to the other phase. The mesas are steep but low, having heights of up to 10 nm. As the monolayer is laterally compressed, the mesas develop overhangs and eventually become unstable at a surface tension of about K(dc)^2 (dc being the difference in spontaneous curvature and K a bending modulus). In addition, the boundary is found to undergo a topography-induced rippling instability upon compression, if its line tension is smaller than about K(dc). The effect of diffuse boundaries on these features and the topographic behavior near a critical point are also examined. We discuss the relevance of our findings to several experimental observations related to surfactant monolayers: (i) small topographic features recently found near domain boundaries; (ii) folding behavior observed in mixed phospholipid monolayers and model lung surfactants; (iii) roughening of domain boundaries seen under lateral compression; (iv) the absence of biphasic structures in tensionless surfactant films.Comment: 17 pages, 9 figures, using RevTeX and epsf, submitted to Phys Rev

    Steric Effects in Electrolytes: A Modified Poisson-Boltzmann Equation

    Full text link
    The adsorption of large ions from solution to a charged surface is investigated theoretically. A generalized Poisson--Boltzmann equation, which takes into account the finite size of the ions is presented. We obtain analytical expressions for the electrostatic potential and ion concentrations at the surface, leading to a modified Grahame equation. At high surface charge densities the ionic concentration saturates to its maximum value. Our results are in agreement with recent experiments.Comment: 4 pages, 2 figure
    • …
    corecore