229 research outputs found

    Zero Temperature Glass Transition in the Two-Dimensional Gauge Glass Model

    Full text link
    We investigate dynamic scaling properties of the two-dimensional gauge glass model for the vortex glass phase in superconductors with quenched disorder. From extensive Monte Carlo simulations we obtain static and dynamic finite size scaling behavior, where the static simulations use a temperature exchange method to ensure convergence at low temperatures. Both static and dynamic scaling of Monte Carlo data is consistent with a glass transition at zero temperature. We study a dynamic correlation function for the superconducting order parameter, as well as the phase slip resistance. From the scaling of these two functions, we find evidence for two distinct diverging correlation times at the zero temperature glass transition. The longer of these time scales is associated with phase slip fluctuations across the system that lead to finite resistance at any finite temperature, while the shorter time scale is associated with local phase fluctuations.Comment: 8 pages, 10 figures; v2: some minor correction

    On the existence of a finite-temperature transition in the two-dimensional gauge glass

    Full text link
    Results from Monte Carlo simulations of the two-dimensional gauge glass supporting a zero-temperature transition are presented. A finite-size scaling analysis of the correlation length shows that the system does not exhibit spin-glass order at finite temperatures. These results are compared to earlier claims of a finite-temperature transition.Comment: 4 pages, 2 figure

    Molecular Dynamics Study of the Nematic-Isotropic Interface

    Full text link
    We present large-scale molecular dynamics simulations of a nematic-isotropic interface in a system of repulsive ellipsoidal molecules, focusing in particular on the capillary wave fluctuations of the interfacial position. The interface anchors the nematic phase in a planar way, i.e., the director aligns parallel to the interface. Capillary waves in the direction parallel and perpendicular to the director are considered separately. We find that the spectrum is anisotropic, the amplitudes of capillary waves being larger in the direction perpendicular to the director. In the long wavelength limit, however, the spectrum becomes isotropic and compares well with the predictions of a simple capillary wave theory.Comment: to appear in Phys. Rev.

    Numerical Study of Spin and Chiral Order in a Two-Dimensional XY Spin Glass

    Full text link
    The two dimensional XY spin glass is studied numerically by a finite size scaling method at T=0 in the vortex representation which allows us to compute the exact (in principle) spin and chiral domain wall energies. We confirm earlier predictions that there is no glass phase at any finite T. Our results strongly support the conjecture that both spin and chiral order have the same correlation length exponent ν≈2.70\nu \approx 2.70. We obtain preliminary results in 3d.Comment: 4 pages, 2 figures, revte

    Numerical Study of Order in a Gauge Glass Model

    Full text link
    The XY model with quenched random phase shifts is studied by a T=0 finite size defect energy scaling method in 2d and 3d. The defect energy is defined by a change in the boundary conditions from those compatible with the true ground state configuration for a given realization of disorder. A numerical technique, which is exact in principle, is used to evaluate this energy and to estimate the stiffness exponent θ\theta. This method gives θ=−0.36±0.013\theta = -0.36\pm0.013 in 2d and θ=+0.31±0.015\theta = +0.31\pm 0.015 in 3d, which are considerably larger than previous estimates, strongly suggesting that the lower critical dimension is less than three. Some arguments in favor of these new estimates are given.Comment: 4 pages, 2 figures, revtex. Submitted to Phys. Rev. Let

    Domain Wall Renormalization Group Study of XY Model with Quenched Random Phase Shifts

    Full text link
    The XY model with quenched random disorder is studied by a zero temperature domain wall renormalization group method in 2D and 3D. Instead of the usual phase representation we use the charge (vortex) representation to compute the domain wall, or defect, energy. For the gauge glass corresponding to the maximum disorder we reconfirm earlier predictions that there is no ordered phase in 2D but an ordered phase can exist in 3D at low temperature. However, our simulations yield spin stiffness exponents θs≈−0.36\theta_{s} \approx -0.36 in 2D and θs≈+0.31\theta_{s} \approx +0.31 in 3D, which are considerably larger than previous estimates and strongly suggest that the lower critical dimension is less than three. For the ±J\pm J XY spin glass in 3D, we obtain a spin stiffness exponent θs≈+0.10\theta_{s} \approx +0.10 which supports the existence of spin glass order at finite temperature in contrast with previous estimates which obtain θs<0\theta_{s}< 0. Our method also allows us to study renormalization group flows of both the coupling constant and the disorder strength with length scale LL. Our results are consistent with recent analytic and numerical studies suggesting the absence of a re-entrant transition in 2D at low temperature. Some possible consequences and connections with real vortex systems are discussed.Comment: 14 pages, 9 figures, revtex

    Evolution of defence portfolios in exploiter-victim systems

    Get PDF
    Some organisms maintain a battery of defensive strategies against their exploiters (predators, parasites or parasitoids), while others fail to employ a defence that seems obvious. In this paper, we shall investigate the circumstances under which defence strategies might be expected to evolve. Brood parasites and their hosts provide our main motivation, and we shall discuss why the reed warbler Acrocephalus scirpaceus has evolved an egg-rejection but not a chick-rejection strategy as a defence against the common (Eurasian) cuckoo Cuculus canorus, while the superb fairy-wren Malurus cyaneus has evolved a chick-rejection but not an egg-rejection strategy as a defence against Horsfield's bronze-cuckoo Chrysococcyx basalis. We suggest that the answers lie in strategy-blocking, where one strategy (the blocking strategy) prevents the appearance of another (the blocked strategy) that would be adaptive in its absence. This may be common in exploiter-victim systems. © 2006 Springer Science+Business Media, Inc
    • …
    corecore