95 research outputs found

    Cement leakage causes potential thermal injury in vertebroplasty

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Percutaneous vertebroplasty by injecting PMMA bone cement into the fractured vertebrae has been widely accepted in treatment of spinal compression fracture. However, the exothermic polymerization of bone cement may cause osseous or neural tissue injury. This study is thus designed to evaluate the potential risk of thermal damage in percutaneous vertebroplasty.</p> <p>Method</p> <p>Twelve porcine vertebrae were immersed in 37°C saline for the experiment. In the first stage of the study, vertebroplasty without cement leakage (control group, n = 6) was simulated. The anterior cortex, foramen, posterior cortex and the center of the vertebral body were selected for temperature measurement. Parameters including peak temperature and duration above 45°C were recorded. In the second stage, a model (n = 6) simulating bone cement leaking into the spinal canal was designed. The methods for temperature measurement were identical to those used in the first stage.</p> <p>Results</p> <p>In Stage 1 of the study (vertebroplasty of the porcine vertebral body in the absence of cement leakage), the average maximal temperature at the anterior cortex was 42.4 ± 2.2°C; at the neural foramen 39.5 ± 2.1°C; at the posterior cortex 40.0 ± 2.5°C and at the vertebral center, 68.1 ± 3.4°C. The average time interval above 45°C was 0 seconds at the anterior cortex; at the neural foramen, 0 seconds; at the posterior cortex, 0 seconds and at the vertebral center, 223 seconds. Thus, except at the core of the bone cement, temperatures around the vertebral body did not exceed 45°C. In Stage 2 of the study (cement leakage model), the average maximal temperature at the anterior cortex was 42.7 ± 2.4°C; at the neural foramen, 41.1 ± 0.4°C; at the posterior cortex, 59.1 ± 7.6°C and at the vertebral center, 77.3 ± 5.7°C. The average time interval above 45°C at the anterior cortex was 0 seconds; at the neural foramen, 0 seconds; at the posterior cortex, 329.3 seconds and at the vertebral center, 393.2 seconds. Based on these results, temperatures exceeded 45°C at the posterior cortex and at the vertebral center.</p> <p>Conclusions</p> <p>The results indicated that, for bone cement confined within the vertebra, curing temperatures do not directly cause thermal injury to the nearby soft tissue. If bone cement leaks into the spinal canal, the exothermic reaction at the posterior cortex might result in thermal injury to the neural tissue.</p

    Radiolucent lines in low-contact-stress mobile-bearing total knee arthroplasty: a blinded and matched case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low-contact-stress (LCS) mobile-bearing total knee arthroplasty (TKA) (Johnson & Johnson, New Brunswick, NJ; previously: DePuy, Warsawa, USA) provides excellent functional results and wear rates in long-term follow-up analyses. Radiological analysis shows radiolucent lines (RLL) appearing immediately or two years after primary implantation, indicative of poor seat. Investigations proved RLL to be more frequent in uncemented TKA, resulting in a consensus to cement the tibial plateau, but their association with clinical findings and patients discomfort and knee pain is still unknown.</p> <p>Methods</p> <p>553 patients with 566 low-contact-stress (LCS) total knee prostheses were screened for continuous moderate knee pain. We compared tibial stress shielding classified by Ewald in patients suffering from pain with a matched, pain-free control group on blinded X-rays. We hypothesized a positive correlation between pain and radiolucency and higher frequency of such radiolucent lines in the most medial and most lateral zones of the tibial plateau.</p> <p>Results</p> <p>Twenty-eight patients suffered from knee pain in total. Radiolucencies were detected in 27 of these cases and in six out of 28 matched controls without knee pain. We could demonstrate a significant correlation of knee pain and radiolucencies, which appeared significantly more frequently in the outermost zones of the tibial plateau.</p> <p>Conclusion</p> <p>Our findings suggest that radiolucent lines, representing poor implant seat, about the tibial plateau are associated with knee pain in LCS patients. Radiolucencies are observed more often in noncemented LCS, and cementing the tibial plateau might improve implant seat and reduce both radiolucent lines and associated knee pain.</p

    Evaluation of a novel nanocrystalline hydroxyapatite paste Ostim® in comparison to Alpha-BSM® - more bone ingrowth inside the implanted material with Ostim® compared to Alpha BSM®

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to evaluate the performance a newly developed nanocrystalline hydroxyapatite, OSTIM<sup>® </sup>following functional implantation in femoral sites in thirty-eight sheep for 1, 2 or 3 months. Ostim<sup>® </sup>35 was compared to an established calcium phosphate, Alpha BSM<sup>®</sup>.</p> <p>Methods</p> <p>Biomechanical testing, μ-CT analysis, histological and histomorphological analyses were conducted to compare the treatments including evaluation of bone regeneration level, material degradation, implant biomechanical characteristics.</p> <p>Results</p> <p>The micro-computed tomography (μCT) analysis and macroscopic observations showed that Ostim<sup>® </sup>seemed to diffuse easily particularly when the defects were created in a cancellous bone area. Alpha BSM<sup>® </sup>remained in the defect.</p> <p>The performance of Ostim was good in terms of mechanical properties that were similar to Alpha BSM<sup>® </sup>and the histological analysis showed that the bone regeneration was better with Ostim<sup>® </sup>than with Alpha BSM<sup>®</sup>. The histomorphometric analysis confirmed the qualitative analysis and showed more bone ingrowth inside the implanted material with Ostim<sup>® </sup>when compared to Alpha BSM <sup>® </sup>at all time points.</p> <p>Conclusions</p> <p>The successful bone healing with osseous consolidation verifies the importance of the nanocrystalline hydroxyapatite in the treatment of metaphyseal osseous volume defects in the metaphyseal spongiosa.</p

    Meta-analysis of pre-clinical studies of early decompression in acute spinal cord injury:a battle of time and pressure

    Get PDF
    The use of early decompression in the management of acute spinal cord injury (SCI) remains contentious despite many pre-clinical studies demonstrating benefits and a small number of supportive clinical studies. Although the pre-clinical literature favours the concept of early decompression, translation is hindered by uncertainties regarding overall treatment efficacy and timing of decompression.We performed meta-analysis to examine the pre-clinical literature on acute decompression of the injured spinal cord. Three databases were utilised; PubMed, ISI Web of Science and Embase. Our inclusion criteria consisted of (i) the reporting of efficacy of decompression at various time intervals (ii) number of animals and (iii) the mean outcome and variance in each group. Random effects meta-analysis was used and the impact of study design characteristics assessed with meta-regression.Overall, decompression improved behavioural outcome by 35.1% (95%CI 27.4-42.8; I(2)=94%, p<0.001). Measures to minimise bias were not routinely reported with blinding associated with a smaller but still significant benefit. Publication bias likely also contributed to an overestimation of efficacy. Meta-regression demonstrated a number of factors affecting outcome, notably compressive pressure and duration (adjusted r(2)=0.204, p<0.002), with increased pressure and longer durations of compression associated with smaller treatment effects. Plotting the compressive pressure against the duration of compression resulting in paraplegia in individual studies revealed a power law relationship; high compressive forces quickly resulted in paraplegia, while low compressive forces accompanying canal narrowing resulted in paresis over many hours.These data suggest early decompression improves neurobehavioural deficits in animal models of SCI. Although much of the literature had limited internal validity, benefit was maintained across high quality studies. The close relationship of compressive pressure to the rate of development of severe neurological injury suggests that pressure local to the site of injury might be a useful parameter determining the urgency of decompression

    Influence of bone marrow fat embolism on coagulation activation in an ovine model of vertebroplasty

    Full text link
    BACKGROUND: Intraoperative cardiovascular deterioration as a result of pulmonary embolization of bone marrow fat is a potentially serious complication during vertebroplasty. The release of fatty material and thromboplastin from the bone marrow cavity during vertebroplasty may activate the coagulation cascade resulting in thrombogenesis, and pharmacological prophylaxis may therefore prevent cardiovascular complications. Thus, the effects of bone marrow fat embolism on coagulation activation during vertebroplasty were investigated with use of an animal model. METHODS: Polymethylmethacrylate was injected into three lumbar vertebrae of six sheep in order to force bone marrow fat into the circulation. Invasive blood pressures and heart rate were recorded continuously until sixty minutes after the last injection. Cardiac output, arterial and mixed venous blood gas parameters, and coagulation parameters were measured at selected time-points. Postmortem lung biopsy specimens were assessed for the presence of intravascular fat. RESULTS: Embolization of bone marrow fat resulted in a sudden and dramatic increase in mean pulmonary arterial pressure and a decrease in mean arterial blood pressure. There were no significant changes in any coagulation parameter from before the injection to after the injection. Intravascular fat and bone marrow cells were present in all lung lobes. CONCLUSIONS: Injection of polymethylmethacrylate into vertebral bodies caused embolization of bone marrow fat with subsequent transient cardiovascular deterioration, but no changes in coagulation parameters were observed. Thromboembolism did not contribute to the observed cardiovascular changes
    corecore