8,404 research outputs found

    Anchoring effects in the development of false childhood memories

    Get PDF
    When people receive descriptions or doctored photos of events that never happened, they often come to remember those events. But if people receive both a description and a doctored photo, does the order in which they receive the information matter? We asked people to consider a description and a doctored photograph of a childhood hot air balloon ride, and we varied which medium they saw first. People who saw a description first reported more false images and memories than people who saw a photo first, a result that fits with an anchoring account of false childhood memories

    Estimation of Delamination Crack Depth Using Passive Thermography

    Get PDF
    Passive thermography is used to monitor small increases in temperature resulting from delamination damage formation in a composite hat-stiffened panel during quasi-static loading. The heating is composed of two heat generation components. The first component is an instantaneous response due to a strain release during quasi-static loading. The second component is mechanical heating, at the interface of failure, due to fracture damage. This second component produces a transient rise in temperature that is a function of the damage depth and thermal diffusivity. The first component defines the thermal start time for the transient response. A one-dimensional thermal model is used to determine the damage depth. The results are compared to ultrasonic and X-ray CT data. The advantages and limitations of the thermal technique for damage depth detection are discussed

    Investigating the origin of cyclical wind variability in hot, massive stars - II. Hydrodynamical simulations of co-rotating interaction regions using realistic spot parameters for the O giant ξ\xi Persei

    Full text link
    OB stars exhibit various types of spectral variability historically associated with wind structures, including the apparently ubiquitous discrete absorption components (DACs). These features have been proposed to be caused either by magnetic fields or non-radial pulsations. In this second paper of this series, we revisit the canonical phenomenological hydrodynamical modelling used to explain the formation of DACs by taking into account modern observations and more realistic theoretical predictions. Using constraints on putative bright spots located on the surface of the O giant ξ\xi Persei derived from high precision space-based broadband optical photometry obtained with the Microvariability and Oscillations of STars (MOST) space telescope, we generate two-dimensional hydrodynamical simulations of co-rotating interaction regions in its wind. We then compute synthetic ultraviolet (UV) resonance line profiles using Sobolev Exact Integration and compare them with historical timeseries obtained by the International Ultraviolet Explorer (IUE) to evaluate if the observed behaviour of ξ\xi Persei's DACs is reproduced. Testing three different models of spot size and strength, we find that the classical pattern of variability can be successfully reproduced for two of them: the model with the smallest spots yields absorption features that are incompatible with observations. Furthermore, we test the effect of the radial dependence of ionization levels on line driving, but cannot conclusively assess the importance of this factor. In conclusion, this study self-consistently links optical photometry and UV spectroscopy, paving the way to a better understanding of cyclical wind variability in massive stars in the context of the bright spot paradigm.Comment: 16 pages, 10 figures, accepted for publication by MNRA
    • …
    corecore