942 research outputs found

    Analytical prediction with multidimensional computer programs and experimental verification of the performance, at a variety of operating conditions, of two traveling wave tubes with depressed collectors

    Get PDF
    Experimental and analytical results are compared for two high performance, octave bandwidth TWT's that use depressed collectors (MDC's) to improve the efficiency. The computations were carried out with advanced, multidimensional computer programs that are described here in detail. These programs model the electron beam as a series of either disks or rings of charge and follow their multidimensional trajectories from the RF input of the ideal TWT, through the slow wave structure, through the magnetic refocusing system, to their points of impact in the depressed collector. Traveling wave tube performance, collector efficiency, and collector current distribution were computed and the results compared with measurements for a number of TWT-MDC systems. Power conservation and correct accounting of TWT and collector losses were observed. For the TWT's operating at saturation, very good agreement was obtained between the computed and measured collector efficiencies. For a TWT operating 3 and 6 dB below saturation, excellent agreement between computed and measured collector efficiencies was obtained in some cases but only fair agreement in others. However, deviations can largely be explained by small differences in the computed and actual spent beam energy distributions. The analytical tools used here appear to be sufficiently refined to design efficient collectors for this class of TWT. However, for maximum efficiency, some experimental optimization (e.g., collector voltages and aperture sizes) will most likely be required

    Transposable element-mediated rearrangements are prevalent in human genomes.

    Get PDF
    Transposable elements constitute about half of human genomes, and their role in generating human variation through retrotransposition is broadly studied and appreciated. Structural variants mediated by transposons, which we call transposable element-mediated rearrangements (TEMRs), are less well studied, and the mechanisms leading to their formation as well as their broader impact on human diversity are poorly understood. Here, we identify 493 unique TEMRs across the genomes of three individuals. While homology directed repair is the dominant driver of TEMRs, our sequence-resolved TEMR resource allows us to identify complex inversion breakpoints, triplications or other high copy number polymorphisms, and additional complexities. TEMRs are enriched in genic loci and can create potentially important risk alleles such as a deletion in TRIM65, a known cancer biomarker and therapeutic target. These findings expand our understanding of this important class of structural variation, the mechanisms responsible for their formation, and establish them as an important driver of human diversity

    Morphogenesis and Malformations of the Skin NICHD/NIADDK Research Workshop

    Get PDF
    Developmentally caused skin malformations constitute a spectrum of birth defects, some of which can be recognized prenatally by morphologic or biochemical means. The number of prenatally diagnosable skin diseases could be greatly expanded with an increased understanding of the molecular and cellular bases of skin development and the mechanisms that result in the generation of skin defects. The National Institute of Child Health and Human Development and the National Institute of Arthritis, Diabetes, Digestive and Kidney Diseases, therefore, sponsored a workshop that recommended basic biologic studies combined with clinical investigations of normal and abnormal cutaneous development set forth in this article. Investigations resulting from these research recommendations are intended to contribute to the knowledge that should aid in the prevention of developmentally caused skin deformities

    Early Assessment of Tumor Response to Radiation Therapy using High-Resolution Quantitative Microvascular Ultrasound Imaging

    Get PDF
    Measuring changes in tumor volume using anatomical imaging weeks to months post radiation therapy (RT) is currently the clinical standard for indicating treatment response to RT. For patients whose tumors do not respond successfully to treatment, this approach is suboptimal as timely modification of the treatment approach may lead to better clinical outcomes. We propose to use tumor microvasculature as a biomarker for early assessment of tumor response to RT. Acoustic angiography is a novel contrast ultrasound imaging technique that enables high-resolution microvascular imaging and has been shown to detect changes in microvascular structure due to cancer growth. Data suggest that acoustic angiography can detect longitudinal changes in the tumor microvascular environment that correlate with RT response

    Methods of Generating Submicrometer Phase-Shift Perfluorocarbon Droplets for Applications in Medical Ultrasonography

    Get PDF
    Continued advances in the field of ultrasound and ultrasound contrast agents have created new approaches to imaging and medical intervention. Phase-shift perfluorocarbon droplets, which can be vaporized by ultrasound energy to transition from the liquid to the vapor state, are one of the most highly researched alternatives to clinical ultrasound contrast agents (i.e., microbubbles). In this paper, part of a special issue on methods in biomedical ultrasonics, we survey current techniques to prepare ultrasound-activated nanoscale phase-shift perfluorocarbon droplets, including sonication, extrusion, homogenization, microfluidics, and microbubble condensation. We provide example protocols and discuss advantages and limitations of each approach. Finally, we discuss best practice in characterization of this class of contrast agents with respect to size distribution and ultrasound activation

    Nutrient Source and Tillage Effects on Maize: II. Yield, Soil Carbon, and Carbon Dioxide Emissions

    Get PDF
    There is a need to understand the potential benefits of using the biotechnology waste by‐product from manufacturing as a fertilizer replacement in agriculture, by quantifying the economic value for the farmer and measuring the environmental impact. Measuring CO2 emissions can be used to assess environmental impact, including three widely used micrometeorological methodologies: (i) the Bowen Ratio Energy Balance (BREB), (ii) aerodynamic flux‐gradient theory, and (iii) eddy covariance (EC). As a first step in quantifying benefits of applying biotechnology waste in agriculture, a detailed examination of these three methods was conducted to understand their effectiveness in quantifying CO2 emissions for this specific circumstance. The study measured micrometeorological properties over a field planted to maize (Zea mays L. var. indentata ), one plot treated with biotechnology waste applied as a nutrient amendment, and one plot treated with a typical farmer fertilizer practice. Carbon dioxide flux measurements took place over 1 yr, using both BREB and EC systems. The aerodynamic method was used to gap‐fill BREB system measurements, and those flux estimates were compared with estimates produced separately by the aerodynamic and EC methods. All methods found greater emissions over the biotechnology waste application. The aerodynamic method CO2 flux estimates were considerably greater than both the EC and a combined BREB‐aerodynamic approach. During the day, the EC and BREB methods agree. At night, the aerodynamic approach detects and accounts for buildup of CO2 at the surface during stable periods. The BREB systems combined with aerodynamic approaches provide alternate methods to EC in examining micrometeorological properties near the surface

    Nutrient Source and Tillage Effects on Maize: I. Micrometeorological Methods for Measuring Carbon Dioxide Emissions

    Get PDF
    There is a need to understand the potential benefits of using the biotechnology waste by‐product from manufacturing as a fertilizer replacement in agriculture, by quantifying the economic value for the farmer and measuring the environmental impact. Measuring CO2 emissions can be used to assess environmental impact, including three widely used micrometeorological methodologies: (i) the Bowen Ratio Energy Balance (BREB), (ii) aerodynamic flux‐gradient theory, and (iii) eddy covariance (EC). As a first step in quantifying benefits of applying biotechnology waste in agriculture, a detailed examination of these three methods was conducted to understand their effectiveness in quantifying CO2 emissions for this specific circumstance. The study measured micrometeorological properties over a field planted to maize (Zea mays L. var. indentata ), one plot treated with biotechnology waste applied as a nutrient amendment, and one plot treated with a typical farmer fertilizer practice. Carbon dioxide flux measurements took place over 1 yr, using both BREB and EC systems. The aerodynamic method was used to gap‐fill BREB system measurements, and those flux estimates were compared with estimates produced separately by the aerodynamic and EC methods. All methods found greater emissions over the biotechnology waste application. The aerodynamic method CO2 flux estimates were considerably greater than both the EC and a combined BREB‐aerodynamic approach. During the day, the EC and BREB methods agree. At night, the aerodynamic approach detects and accounts for buildup of CO2 at the surface during stable periods. The BREB systems combined with aerodynamic approaches provide alternate methods to EC in examining micrometeorological properties near the surface

    Conservation agriculture as a climate change mitigation strategy in Zimbabwe

    Get PDF
    There is a need to quantify agriculture’s potential to sequester carbon (C) to inform global approaches aimed at mitigating climate change effects. Many factors including climate, crop, soil management practices, and soil type can influence the contribution of agriculture to the global carbon cycle. The objective of this study was to investigate the C sequestration potential of conservation agriculture (CA) (defined by minimal soil disturbance, maintaining permanent soil cover, and crop rotations). This study used micrometeorological methods to measure carbon dioxide (CO2) flux from several alternative CA practices in Harare, central Zimbabwe. Micrometeorological methods can detect differences in total CO2 emissions of agricultural management practices; our results show that CA practices produce less CO2 emissions. Over three years of measurement, the mean and standard error (SE) of CO2 emissions for the plot with the most consistent CA practices was 0.564 ± 0.0122 g CO2 m-2 h-1, significantly less than 0.928 ± 0.00859 g CO2 m-2 h-1 for the conventional tillage practice. Overall CA practices of no-till with the use of cover crops produced fewer CO2 emissions than conventional tillage or fallow

    A Comparative Evaluation of Ultrasound Molecular Imaging, Perfusion Imaging, and Volume Measurements in Evaluating Response to Therapy in Patient-Derived Xenografts

    Get PDF
    Most pre-clinical therapy studies use the change in tumor volume as a measure for disease response. However, tumor size measurements alone may not reflect early changes in tumor physiology that occur as a response to treatment. Ultrasonic molecular imaging (USMI) and Dynamic Contrast Enhanced - Perfusion Imaging (DCE-PI) with ultrasound are two attractive alternatives to tumor volume measurements. Since these techniques can provide information prior to the appearance of gross phenotypic changes, it has been proposed that USMI and DCE-PI could be used to characterize response to treatment earlier than traditional methods. This study evaluated the ability of tumor volume measurements, DCE-PI, and USMI to characterize response to therapy in two different types of patient-derived xenografts (known responders and known non-responders). For both responders and non-responders, 7 animals received a dose of 30 mg/kg of MLN8237, an investigational aurora-A kinase inhibitor, for 14 days or a vehicle control. Volumetric USMI (target integrin: αvÎČ3) and DCE-PI were performed on day 0, day 2, day 7, and day 14 in the same animals. For USMI, day 2 was the earliest point at which there was a statistical difference between the untreated and treated populations in the responder cohort (Untreated: 1.20±0.53 vs. Treated: 0.49±0.40; p < 0.05). In contrast, statistically significant differences between the untreated and treated populations as detected using DCE-PI were not observed until day 14 (Untreated: 0.94±0.23 vs. Treated: 1.31±0.22; p < 0.05). Volume measurements alone suggested no statistical differences between treated and untreated populations at any readpoint. Monitoring volumetric changes is the “gold standard” for evaluating treatment in pre-clinical studies, however, our data suggests that volumetric USMI and DCE-PI may be used to earlier classify and robustly characterize tumor response
    • 

    corecore