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Abstract

Continued advances in the field of ultrasound and ultrasound contrast agents have created new 

approaches to imaging and medical intervention. Phase-shift perfluorocarbon droplets, which can 

be vaporized by ultrasound energy to transition from the liquid to the vapor state, are one of the 

most highly researched alternatives to clinical ultrasound contrast agents (i.e., microbubbles). In 

this paper, part of a special issue on methods in biomedical ultrasonics, we survey current 

techniques to prepare ultrasound-activated nanoscale phase-shift perfluorocarbon droplets, 

including sonication, extrusion, homogenization, microfluidics, and microbubble condensation. 

We provide example protocols and discuss advantages and limitations of each approach. Finally, 

we discuss best practice in characterization of this class of contrast agents with respect to size 

distribution and ultrasound activation.
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I. Introduction

Among recent technological advances in medical ultrasonography, the field of ultrasound 

contrast agents has continued to develop rapidly, both in breadth of applications and 

continued improvement and specialization of agent formulation techniques. The current 

clinical standard in contrast-enhanced ultrasonography takes the form of encapsulated gas 

microspheres, or “microbubbles,” that are designed to circulate intravascularly. The high 

microbubble echogenicity and nonlinear acoustic response allow for discrimination of the 

blood compartment from surrounding tissue, which can be used in diagnostic applications 

spanning echocardiography to cancer [1], [2]. Through the unique acoustic cavitation 

dynamics at ultrasonic frequencies and modifications in microbubble design, researchers 

have developed microbubble-based approaches to molecular imaging and therapy that are 

rapidly approaching the clinic [3]–[6].

In some applications, the size of microbubbles (on the order of 1–5 μm in diameter) and low 

circulatory persistence (on the order of minutes [7]) are limiting. Phase-shift 

perfluorocarbon (PFC) droplets are perhaps the most actively researched alternative contrast 

agent in the field of ultrasound capable of addressing these limitations [8]–[10]. 

Conceptually, a phase-shift droplet is designed to circulate as a “microbubble precursor” 

until interaction with the acoustic beam nucleates the liquid core, causing a transition to the 

vapor state that results in a volumetric expansion on the order of five to six times the original 

diameter (predicted by ideal gas law relationships [11]). This acoustically triggered 

transition to a bubble allows for high control over the change in particle density, 

compressibility, and echogenicity. Although the underlying physics of droplet vaporization 

are not fully understood, nucleation of the core primarily depends on choice of 

perfluorocarbon, droplet size, ambient pressure and temperature, the local peak negative 

pressure of the traveling acoustic wave, and heating from ultrasound absorption [8], [12], 

[13]. Recent studies have shown that focusing of harmonics within the droplet core can also 

significantly affect droplet vaporization thresholds [14].

Whereas the useful size range of microbubbles is primarily limited to that which provides 

both safe passage through the capillary networks and sufficient acoustic response for 

imaging, phase-shift droplets can be generated across a wider useful size range. Microscale 

droplets (<10 μm in diameter) may be vaporized to expand and selectively occlude blood 

flow, enhance thermal ablation, aid drug delivery, or serve as point targets for phase 

aberration correction [8], [12]. Submicrometer droplets on the order of 100–300 nm may be 

small enough to exit the “leaky” endothelium of solid tumors [15] and enter into the 

interstitial space prior to vaporization into micrometer-scale bubbles of ideal size for 

ultrasound interaction and imaging [16]–[21]. Submicrometer droplets may also have utility 

for purely intravascular applications such as molecular imaging and measurement of 

vascular perfusion [22], [23]. For both size regimes, droplets (prior to activation) appear to 
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provide significantly increased circulation time compared with microbubbles, presumably 

due to slower dissolution rates and minimized gas exchange/clearance in the lungs [23], 

[24]. Outside the realm of medical ultrasound, phase-shift droplets may have significant 

potential in applications such as DNA fragmentation [25] and tissue scaffold patterning [26].

A number of particle generation techniques have been employed since the earliest 

publications on submicrometer phase-shift droplets. Each method has key advantages and 

limitations—chiefly depending on which perfluorocarbon is used as the droplet core. In this 

paper, we first review the governing thermodynamics and design principles surrounding the 

formulation of phase-shift droplets from volatile compounds. Next, we survey the most 

common contemporary techniques of producing submicrometer phase-shift droplet 

emulsions, including example protocols and discussions on best practices and common 

pitfalls in characterization with the motivation of educating ultrasound researchers new to 

the techniques and fostering future refinement and standardized protocols.

II. Governing Principles

A. Superheat, Metastability, and Perfluorocarbon Choice

The condition for acoustic droplet vaporization is governed by the thermodynamics and 

kinetics of the fluorocarbon core. Vaporization occurs when the fluorocarbon molecules 

acquire sufficient thermal kinetic energy to overcome the attractive intermolecular van der 

Waals potential energy. From a purely thermodynamics view, this occurs as the system 

crosses the equilibrium saturation line, which separates the gas and liquid phases as a 

function of temperature and pressure. Thermodynamics predicts that, for a given 

temperature (e.g., 37 °C), the droplet vaporizes once the absolute pressure of the acoustic 

wave drops below the saturation pressure during rarefaction [27]. However, thermodynamics 

alone fails to predict the existence of superheated droplets (i.e., ones that remain in the liquid 

state at temperatures and pressures above the saturation curve), as well as the magnitude of 

the experimentally observed peak negative acoustic pressures required for vaporization of 

these superheated droplets.

Two theories have been proposed to account for these phenomena in the ultrasound 

literature. The first theory was given by Rapoport et al. [16], who explained the suppression 

of thermal droplet vaporization as a consequence of Laplace pressure (surface tension at the 

curved interface), which effectively shifts the equilibrium saturation curve (Antoine’s 

equation) to higher temperatures and lower pressures. Because Laplace pressure scales with 

inverse droplet radius, the theory explains the observed superheat stability for nanoscale and 

microscale droplets. However, the theory does not explain all of the observed phenomena. 

The first and foremost is their stability against phase separation and long shelf life. If the 

droplets have a significant Laplace pressure, then the emulsion should rapidly coarsen by 

Ostwald ripening to form larger less thermally stable droplets. A recent theoretical and 

experimental study showed that fluorocarbon diffusion can be sufficiently rapid to modify 

the emulsion over the timeframe of just a few minutes [28].

An alternative theory was recently put forth by Mountford et al. [29]. This theory explained 

suppression of droplet vaporization as a consequence of kinetics: the energy barrier for 
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nucleation of a vapor embryo of critical size. This critical size is the point at which the 

chemical potential gradient overcomes the Laplace pressure–volume work, and is found as 

the peak Gibbs free energy when plotted against the embryo radius. Once an embryo of 

critical size forms, it grows very rapidly to transform the entire liquid phase into a vapor 

[30]–[32]. For homogeneous nucleation—where the vapor embryo forms in the bulk 

fluorocarbon liquid phase—the activation energy can be quite large. In contrast, the energy 

barrier for heterogeneous nucleation (e.g., occurring at surface cracks and impurities) is 

much reduced and would not stabilize the superheated droplet. The homogeneous nucleation 

theory does not require a high Laplace pressure in the droplet core, which explains the 

experimental observation of emulsion stability. The homogeneous nucleation theory also 

accurately predicts the experimentally observed elevated ambient pressure needed to 

condense microbubbles [33], where the Laplace pressure theory fails (it predicts a lower 

pressure). Finally, homogeneous nucleation theory accurately predicts that thermal 

vaporization must occur at the spinodal (80%–90% of the critical temperature [34]), which 

marks the boundary of the region where homogeneous states are stable. Thermal 

vaporization at the spinodal has been observed experimentally [29], [35]. It is important to 

note that the homogeneous nucleation theory predicts that superheated microscale and 

nanoscale droplets are in a metastable kinetically trapped state owing to a local minimum in 

the free energy landscape. The rate of spontaneous vaporization for a droplet population at a 

given ambient pressure and temperature will depend on multiple aspects of droplet design, 

including droplet size, encapsulation, and fluorocarbon choice [36].

The implications of homogeneous nucleation theory allow for some practical design 

principles regarding droplet stability. Rather than rely on the bulk boiling point of the 

compound as an indication of droplet stability at body temperature, it is instead possible to 

choose compounds based on the spinodal (approximately 90% of the critical temperature) 

(Table I). So long as this is well above body temperature, it can be expected that the 

microscale and nanoscale droplets will remain metastable with minimal spontaneous 

vaporization. By the same principles surrounding metastability, the choice of 

perfluorocarbon also impacts vaporization threshold [17], [37], [38]; as the degree of 

superheat increases, the peak negative pressure required for vaporization decreases. This has 

been exploited in a number of studies to produce droplets with vaporization thresholds more 

amenable to use with diagnostic imaging systems. For example, it has been shown that C3F8 

droplets vaporize at a lower temperature [29], laser fluence [39], and peak negative pressure 

[23], [38] than for C4F10, and C4F10 vaporizes at lower peak negative pressures and laser 

fluence than C5F12. However, choosing compounds with lower boiling points also comes at 

the expense of increased emulsion degradation. As molecular weight decreases, the increase 

in vapor pressure and droplet dissolution can reduce long-term stability [40]. Thus, there is a 

tradeoff required to produce phase-shift droplets with ideal critical temperature, vaporization 

pressures, solubility, and biocompatibility. Mixtures of perfluorocarbons can lead to 

intermediate vaporization thresholds [38], [41]. Unfortunately, it seems that the applicability 

of mixing highly volatile fluorocarbons (such as C3F8 and C4F10) may be limited by rapid 

depletion of the species with higher vapor pressure and solubility in systems open to the 

atmosphere [28]. Further research is needed to determine whether the same effect 

significantly occurs in mixtures of less volatile fluorocarbons.
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Several acoustic vaporization studies have shown that vaporization pressure increases as 

droplet size is reduced. To the best of our knowledge, this was first reported in [30] for 

albumin-encapsulated droplets with cores of C5F12, and has since been observed for other 

perfluorocarbons and encapsulations [13], [17], [42], [43]. The magnitude of the effect is 

inconsistent with predictions for the Laplace pressure mechanism alone. For example, 

Kripfgans et al. [30] measured a 3-MHz vaporization threshold increase of approximately 

380 kPa for 10-μm diameter droplets compared with 20-μm droplets, while the maximum 

that can be expected from Laplace pressure for these sizes is on the order of 30 kPa 

(assuming an unrealistically high surface tension near 70 mN/m). Droplets at the nanoscale 

have been reported to have vaporization pressures on the order of 2 MPa greater than their 

microscale counterparts [42], [43], which again contradicts Laplace pressure theory alone.

Alternatively, Shpak et al. [14] recently described a super-harmonic focusing effect where 

transmit pulse harmonics are focused within the droplet by the droplet’s curvature, locally 

increasing peak negative pressure and initiating vaporization. One of the suggestions of the 

model is that the effect diminishes as droplet size is reduced. With less effective focusing, 

smaller droplets would require a higher incident pressure for vaporization. This is consistent 

with [36] that experimentally validates the combination of homogeneous nucleation theory 

with superharmonic focusing over a broad range of microscale droplet sizes. In another 

experiment where laser heating rather than acoustic stimulation was used to induce 

vaporization, the threshold fluence was found to be independent of droplet size, although the 

droplet size range was somewhat limited in that study [39]. We therefore conclude that 

homogeneous nucleation is the likely explanation for droplet superheat stability, while 

superharmonic focusing is likely the explanation for the droplet size effect on acoustic 

vaporization thresholds.

B. Encapsulation

Since the superheated drops are thermodynamically unstable, kinetically trapped particles in 

a metastable state, it is critical to “stabilize” them for a time that is sufficiently long for 

practical use. This is done by choice of the encapsulation, which can stabilize the droplet by 

inhibiting coalescence, reducing surface tension (reducing Laplace pressure), and retarding 

diffusion of the fluorocarbon into the surrounding medium. For a lipid encapsulation, one 

can achieve better stability by simply increasing the cohesion energy through a longer 

hydrophobic acyl chain length [29], [33]. This strategy, however, must avoid hydrophobic 

mismatch between the encapsulating lipid species, which inevitably leads to lateral phase 

separation and poor mechanical stability.

One major advantage of using a lipid is its mechanical flexibility, its ability to form a 

continuous extended membrane that seals upon itself (self-healing), and the strong adhesion 

energy to itself (to form bilayers) and to the fluorocarbon/water interface (to form 

monolayers). These properties allow the lipid monolayer to buckle and fold into bilayer 

folds upon surface compression, and these folds can then unzip back into the monolayer 

upon expansion (Fig. 1). Such behavior ensures that the acoustically vaporized bubble is 

encapsulated and stabilized against dissolution and coalescence. Several studies have 

experimentally shown that the lipid remains associated with the bubble after vaporization 
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and continues to influence oscillation dynamics after the bubble has been fully formed [22], 

[31], [44], [45]. Thus, it is possible to achieve several condensation/vaporization cycles 

when a lipid is used as the encapsulating material [29]. Note that, while longer lipid acyl 

chains lead to better stability, they also suppress the rate of vaporization [29], and therefore 

an optimum should be found.

III. Particle Generation Techniques

A. Sonication

Probe or tip sonication is a general homogenization technique and a common and simple 

method to produce different types of nanoscale PFC droplets [19], [46], [47]. In this method, 

a sonication tip is placed directly into a vial containing the components of the droplets (PFC 

and encapsulation material) and the continuous aqueous phase (typically water or saline). 

Ultrasound from the tip produces air bubbles that cavitate in the solution, emulsifying the 

dispersed phase (here, the PFC) within the continuous phase (aqueous solution) with the 

shell material (e.g., surfactant). Because the final droplet properties, including size and 

stability, depend on the emulsifier and its interaction with the continuous and dispersed 

phases, the purity of the emulsion components can affect the final product.

The main benefits of using tip sonication for synthesizing submicrometer droplets are its 

ease of use (“mix and go”) and the relatively low capital cost of the equipment. Furthermore, 

since the system is closed with less intrinsic loss in the components of the emulsion during 

synthesis, relative droplet concentrations can be better quantified compared with other 

methods that are based on flow techniques where material can be lost during processing. It is 

also simple to incorporate other agents (e.g., solid nanoparticles or liquid agents [46], [47]) 

into PFC droplets using tip sonication. This is more difficult using other synthesis methods 

as even very small aggregates can block the membrane filters used in extrusion or the 

channels/orifice in microfluidics.

Disadvantages of this technique include the potential destruction of the emulsion 

components from the high energy input from the probe [48], the erosion of the probe tip that 

can contaminate the solution and limit translation, and the increased polydispersity of the 

final droplet population compared with other synthesis methods (Fig. 2).

Another key consideration is that energy input from the probe into the emulsion is very high, 

and so the local placement of the probe in the solution will have a substantial impact on the 

final product. The relationship between the sample volume and probe size, the type of tip 

used, and the placement of the tip in the vessel is extremely important [49]. The vessel must 

be kept in an ice/water bath during sonication to prevent excess heating, and the tip should 

be operated in a pulsed mode to prevent vaporization of the droplets during production. It 

should also be noted that temperature changes can also affect solution viscosity (e.g., of 

fluorosurfactants) and can also cause temperature-dependent aggregation (e.g., in lipids). 

Before each sonication procedure, the tip must be visually inspected for any inhomogeneity 

on its surface—any tip defects will result in increased sloughing of contaminant metal into 

the solution and poor energy transfer to the solution.
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A sample protocol based on the literature is given here [46], [47]. Like all methods, it is 

easiest to start with a simple formulation [e.g., containing only a single fluorosurfactant as 

the emulsifier and perfluorocarbon with high thermal stability (e.g., PFH)] to form stable 

and consistent PFC nanodroplets as a control for new method development. As more 

experience is gained, more biocompatible compounds and formulations with more volatile 

perfluorocarbons (e.g., DDFP) can be attempted. For this example, we are using PFH 

(SynQuest Labs) with the fluorosurfactant Zonyl FSP (Sigma–Aldrich) and a Branson 

Digital S450D Sonifier (400 W) with a 3-mm microtip.

1. In a narrow glass vessel, dissolve 10 μL FSP in 2 mL ddH2O. Bath sonicate the 

mixture for 1 min.

2. Add 60 μL PFH to the mixture.

3. Immerse the vessel in a cold water bath, and sonicate the solution for 5 min, at 

10% amplitude (3 W), using a 1-s ON/1-s OFF pulse. Size the droplets.

4. Filter the solution using a sterile <0.45-μm membrane filter to remove large 

droplets and metal particulates. Use a filter with pores slightly larger than the 

droplet size. Repeat droplet sizing.

5. Centrifuge the solution to sediment the droplets (e.g., 4000 rpm for 20 min at 

4 °C using an Eppendorf 5430 R centrifuge). Draw off and discard the 

supernatant. If too high a centrifugation speed is selected, the PFC droplets will 

be destroyed, forming a liquid phase in the bottom of the centrifuge tube.

6. Resuspend the droplets in water/saline to the desired concentration. Droplets 

should be sized at this stage and evaluated for stability.

B. Extrusion

Extrusion, commonly used for the synthesis of liposomes, can also be simply adapted for the 

synthesis of PFC droplets [42], [50]–[53]. Membrane extrusion is a gentler way to 

synthesize PFC droplets compared with sonication. Extrusion typically results in higher 

monodispersity compared with sonication for a given formulation, with the droplet size 

controlled by the pore size of the membrane used, ranging from micrometer scale to 

nanoscale PFC droplets.

However, extrusion is more complex than sonication, and can require substantial 

formulation-dependent method development. For example, formation of PFC droplets using 

phospholipids can be difficult due to the preferential formation of liposomes. Also, 

depending on the phospholipids used and their concentrations, their solubility in the aqueous 

or PFC phase can lead to aggregate formation that can block the membrane filters. Similarly, 

the loading of other compounds within the PFC (e.g., nanoparticles or molecular agents) can 

be challenging.

A method to produce simple fluorosurfactant-stabilized PFH nanodroplets using extrusion is 

given here. Assumptions are made that the users are familiar with basic extruder operation. 

For this example, we are using a LIPEXTM 10-mL extruder (Northern Lipids, Inc.) and PFH 

with the fluoro-surfactant Zonyl FSP. Moving to lower boiling point PFCs (e.g., DDFP) 
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while using fluorosurfactants is straightforward, but care should be taken to keep the system 

cooled to below the bulk boiling point of the PFC during extrusion.

1. Combine 2 wt.% of FSP in 4 mL ddH2O to form the continuous phase.

2. Add 0.4 mL of PFC (the dispersed phase) into the continuous phase, and vortex 

the mixture for 1 min.

3. Load two layers of 1-μm pore size polycarbonate membranes (Nuclepore Track-

Etch Membrane, Whatman) in the extruder and load the mixture for extrusion.

4. Extrude the sample ten times (at pressure of ~20 psi).

5. Change the filter to two layers of 0.4-μm pore size membranes and repeat 

extrusion (approximately five times).

6. Change the filter to two layers of 0.2-μm pore size membranes. Adjust the 

pressure to ~80 psi. Repeat the extrusion (approximately five times).

7. After extrusion, the sample should be centrifuged and the PFC droplets 

resuspended in saline or water to the desired concentration as described 

previously.

Kopechek et al. [50] have published a detailed protocol that combines sonication and 

extrusion to generate submicrometer phospholipid-encapsulated DDFP droplets, which we 

recommend to the reader.

C. Microbubble Condensation

Generating phase-shift droplets by microbubble condensation first appeared in the research 

literature in response to the challenge of generating droplets from highly volatile compounds 

such as decafluorobutane, which exists in the vapor state at room temperature. Initial 

attempts to produce DFB droplets involved extrusion at temperatures below −2 °C (the 

boiling point of DFB) [17]. However, the low surface tension of DFB in the liquid state and 

the high viscosity of the phospholipid solution at these temperatures proved difficult in 

forming viable submicrometer distributions. As a solution, Sheeran et al. [54] proposed 

instead condensing “precursor” microbubbles with DFB cores into submicrometer droplets 

by reducing ambient temperature and increasing ambient pressure until the core converts to 

the liquid state.

This approach yields some significant advantages, including simplicity of generating high-

concentration droplet emulsions of volatile compounds (reduced vaporization thresholds 

compared with droplets of DDFP and PFH) with minimal equipment requirements and the 

ability to modify and manipulate microbubbles at the microscale prior to condensation [22], 

[33], [39], [43]. It has more recently been adapted to produce photoacoustic contrast agents 

[39], [55], and provides a novel opportunity to produce phase-shift droplets directly from 

commercially available microbubble contrast agents [35]. However, there are some 

limitations. For research purposes, a well-developed microbubble synthesis protocol is 

required unless commercial microbubbles—significantly more expensive—are used. As 

most microbubble distributions are highly polydisperse, producing droplets with narrow size 

distributions at the nanoscale is relatively difficult, although differential centrifugation can 
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be utilized to overcome this [56]. While it is relatively simple to incorporate particles, dyes, 

and targeting ligands into the droplet shell [22], [38], [39], it is difficult to encapsulate 

particles within the core of the resulting droplet. The volumetric decrease during 

condensation can produce phospholipid shedding [33], although optimal formulation can 

mitigate this secondary effect [29]. Finally, many microbubble preparation techniques 

contain large microbubble outliers that may also be condensed—producing very large 

droplets that may interfere with intended use in vivo unless removed during processing [43].

As microbubble synthesis methods are beyond the scope of this paper, we present an 

example protocol that assumes a phospholipid-encapsulated DFB microbubble emulsion is 

already prepared in a glass container (e.g., 3-mL Wheaton vial) with a headspace of DFB 

vapor and sealed with a rubber septum.

1. Cool a bath of alcohol (e.g., N-propanol) to −10 °C with pieces of dry ice and 

maintain this temperature.

2. Swirl the vial of microbubbles to ensure that it is well mixed. Submerge the vial 

until the microbubble layer is below the surface of the cooling bath. Continue 

swirling for 30 s to cool vial contents.

3. Vent the vial by piercing the rubber septum with an 18–21 G syringe needle. This 

prevents negative pressure from developing inside the vial at the reduced 

temperature that counteracts condensation.

4. While vented, continue swirling for 1 min 30 s and then remove from the alcohol 

bath (as needed—see the discussion in the following).

5. To aid condensation, attach syringe or pressure source to venting needle. 

Submerge vial, continue swirling, and gradually increase headspace pressure 

until change in vial consistency is observed.

6. Remove the venting needle and store at 4 °C prior to use.

Fig. 3(a) and (b) shows an example of phospholipid-encapsulated DFB microbubbles 

(following the recipe in [23]) and size distribution (measured by Accusizer 780, Particle 

Sizing Systems, Santa Barbara, CA, USA) prior to condensation. Note the milky appearance 

of the microbubble solution and the polydisperse size distribution. Fig. 3(c) and (d) shows 

the same vial after condensation, accompanied by the sub-micrometer size distribution 

(measured by NS-500, Malvern Instruments, Westborough, MA, USA). Note the change in 

translucency and the shift of the distribution peak into the 100–200-nm range. Studies have 

shown that condensation of the microbubble precursors generally follows ideal gas law 

expectations and that revaporization of the droplets produces a similar microbubble 

distribution to the precursor distribution with appropriate experimental conditions [39], [57] 

(see the discussion for role of secondary effects).

From our experience, some common pitfalls are encountered during microbubble 

condensation. This method generally works best when the solution can be cooled to below 

the boiling point of the compound in the microbubble core, causing condensation by 

temperature alone. For DFB, this means temperatures on the order of −5 °C to −10 °C. The 

ability to maintain this cooling without freezing the vial components strongly depends on the 
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composition of the excipient solution (ratio of saline, propylene glycol, glycerol, etc.). For 

solutions that cannot be cooled to below the compound’s boiling point without freezing, it is 

possible to condense by cooling to the nearest feasible temperature and then increasing the 

headspace pressure gradually (e.g., 5-psi increments) until condensation is observed. This is 

the approach used when generating droplets from the highly volatile perfluorocarbon OFP 

(boiling point = −37 °C) [38].

Condensation of a microbubble can be impeded by both the phospholipid shell and the 

presence of other species of dissolved gases in the microbubble core [33], [58]. When 

microbubbles do not condense under the expected conditions, the most common source is 

compromised perfluorocarbon purity in the microbubble core (e.g., from a poor gas-

exchange process). In this case, the microbubbles can usually still be condensed by applying 

incremental headspace pressure as described above until the phase transition is observed, 

though it may not produce the same submicrometer emulsion obtained for microbubbles of 

higher PFC purity.

D. Microfluidics

Monodisperse droplets with coefficient of variation (CV) <5.0% cannot be easily achieved 

using sonication, extrusion, or microbubble condensation. Microfluidics can produce 

emulsions with excellent size control and with superior monodispersity compared with other 

droplet synthesis methods (e.g., sonication, extrusion, or manual or mechanical agitation). 

However, the formation of nanoscale droplets (i.e., smaller than the minimum dimension of 

standard microfluidic devices, typically a few micrometers) is more challenging. 

Unacceptable increases in CV typically occur as the droplet dimensions approach the 

minimum size that can be generated by the microfluidic system [59]–[61].

Several new microfluidic methods have been introduced to produce monodisperse nanoscale 

PFC droplets. Microfluidics can directly generate nanoscale droplets in the tip-streaming 

regime. Martz et al. [62] reported production of DDFP (C5F12) droplets with diameters on 

the order of 360 nm in this flow regime. In general, producing droplets in the tip-streaming 

regime is strongly dependent on the capillary number (0.4 ≤ Ca ≤ 1.0), and requires very 

stable nonfluctuating flows of the dispersed and continuous phases [59]. The smallest size of 

the droplets that can be obtained through tip streaming is determined by the microfluidic 

system’s viscous forces and surface/interfacial tensions, typically modified through changes 

in the dimensions and geometries of the microfluidic chip and the properties and flow rates 

of the fluids [59], [62], [63]. Another direct approach may be through the use of nanofluidic 

devices [60], [64], but this requires masters fabricated using specialized multilayer 

nanofabrication techniques.

There have been several indirect methods used to form monodisperse nanoscale PFC 

droplets from larger monodisperse droplets or bubbles produced using microfluidics. For 

example, the technique of cosolvent dissolution from cosolvent-infused PFC droplets 

produced by microfluidics has been used to produce size-reduced PFC droplets 

approximately five times smaller in diameter than the original microfluidics-produced 

droplet [65]. An advantage of this technique is the ease of integrating unmodified lipophilic 

nanoparticles and/or molecular drugs into the PFC core using the cosolvent, which, upon 
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dissolution, is fully removed leaving behind pure PFC nanodroplets containing the drugs 

locked within their cores [65], [66].

Another indirect method to produce monodisperse ultra-small PFC droplets uses the 

condensation of monodisperse precursor bubbles generated using a microfluidic device 

operating at temperatures higher than the boiling point of the droplet material [67]. Since the 

condensation of bubbles is limited by the density difference between the gas and liquid 

phases of the droplet material, this technique is limited to the formation of final droplets that 

are approximately five times smaller in diameter than the precursor PFC bubbles. The 

combination of condensation and dissolution of cosolvent-infused bubbles generated by 

microfluidics has been shown to produce monodisperse PFC droplets substantially smaller 

in diameter than what can be achieved using either the condensation or dissolution process 

alone (~24 times smaller in diameter than the precursor droplets) [68], which is promising 

for the production of monodisperse nanoscale PFC droplets <200 nm in size. It has been 

shown that monodisperse PFC droplets can be converted to monodisperse bubbles after 

exposure to high-pressure ultrasound (Fig. 4) [68].

Although no other emulsification method can achieve superior PFC droplet monodispersity 

compared with microfluidics, the major limitation of microfluidics (besides the difficulty in 

generating submicrometer droplets/bubbles) is its relatively low production yield (typically 

<104–106 droplets/s). Generating enough droplets for effective evaluation in vitro and in 
vivo requires an extremely stable system and many hours of generation time. Furthermore, 

microfluidics requires relatively specialized equipment and expertise that could make this 

method out of reach for novice users.

As a starting point for the novice user, it is recommended that first larger microdroplets are 

made using microfluidics with a relatively large orifice and a higher boiling point PFC (e.g., 

PFH) emulsified with a fluorosurfactant. Once this general technique has been perfected, 

nanoscale droplets can be made by adapting the techniques as introduced above. This 

example protocol describes the generation of microdroplets with microfluidic flow-focusing 

method using a three-inlet microfluidic device design in [67]–[69]. Here, the continuous 

aqueous phase “pinches off” the central fluid of perfluorohexane (dispersed phase) to form 

droplets. For this example, we are using PFH with the fluorosurfactant Zonyl FSP and 

Pluronic F-68 (Sigma–Aldrich) to directly produce stable microscale monodisperse 

perfluorocarbon droplets.

1. Combine 0.5 wt% FSP, 1 wt% F-68, 60 wt% glycerol, and 38.5 wt% ddH2O to 

form the continuous phase.

2. With a 10-mL syringe, take 10 mL of the continuous phase solution made in Step 

1, and connect the syringe to the port for the continuous phase of the 

microfluidic chip using polytetrafluoroethylene tubing.

3. With a 1-mL syringe, take 1 mL of PFH and connect it to the port for dispersed 

phase of the microfluidic chip using polytetrafluoroethylene tubing.

4. Using two syringe pumps, inject the continuous phase in the 10-mL syringe at 1 

mL/h and the dispersed phase in the 1-mL syringe at 0.1 mL/h.
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5. Wait for 5–10 min for the droplets to start generating.

6. Observe droplet generation at the microfluidic device orifice under an inverted 

microscope (10x objective) coupled to a high-speed charge-coupled device 

camera. If the droplet generation is too fast to observe (~400/s) during generation 

at the orifice, it may instead be viewed more clearly at the collection port.

7. Once it is confirmed that stable microdroplet generation has been established, the 

microdroplets can be collected by connecting the outlet port to a glass vial with 

polytetrafluoroethylene tubing.

8. To control droplet generation size, adjust the flow rates of the continuous and 

dispersed phases. Ensure that the system is equilibrated for 5–10 min after each 

change of flow rate.

E. Homogenization/Microfluidization

Beginning with some of the earliest reports on submicrometer perfluorocarbon droplets as 

contrast agents [70], [71] and submicrometer phase-shift droplets [13], [18], [41], 

researchers have relied on commercial homogenization/microfluidization systems to reduce 

particle size into the nanoscale. In general, these emulsification products operate by passing 

the sample through a network of microfluidic channels at high pressure, exposing the sample 

to high shear rates that break up and reform particles into smaller size distributions. 

Typically, the process is repeated for several passes to gradually refine the sample 

distribution. Care must be taken to control the temperature at the system output (commonly 

with ice-cooled water) to minimize evaporation of the compounds being homogenized. This 

approach naturally produces a bubbly solution, and the droplets can be separated from the 

bubbles through techniques such as centrifugation or flotation [70]. In the literature, this 

approach has been used to produce submicrometer perfluorocarbon droplets composed of 

PFH and DDFP, but has not, to the best of our knowledge, been applied to lower boiling 

point compounds.

For phase-shift droplets, the size distribution produced will significantly depend on the 

homogenizer used (varying geometry and system design with each manufacturer), and so 

protocols may change significantly across products. As an example protocol, we refer the 

reader to [70], in which PFH droplets of varying size were produced by homogenization. 

Reznik et al. [18] modified this protocol to produce DDFP droplet emulsions with a mean 

diameter of 405 nm.

IV. Characterization of Submicrometer Phase-Shift Droplets

A. Particle Sizing and Concentration

Characterization of submicrometer particles is complicated by the fact that the primary 

distribution exists near or below brightfield resolution limits of microscopy. Similarly, a 

number of products are available to simultaneously characterize both size and concentration 

of particles at the microscale (e.g., Coulter counters), but the standard approach to sizing at 

the nanoscale [dynamic light scattering (DLS)] does not measure concentration and only 

estimates the true particle distribution indirectly (by extrapolation from scattering intensity). 
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As such, care must be taken to follow best practice procedures in sample preparation and 

characterization.

When using instruments that characterize submicrometer distributions by DLS (e.g., 

Malvern ZetaSizer), we recommend following the guidelines set by the Nanotechnology 

Characterization Laboratory [72], which comprehensively covers techniques to best 

characterize samples. While too extensive to reproduce in full, here we mention a few points 

pertinent to characterizing volatile perfluorocarbon droplets from that guideline as well as 

from our experience.

1. Samples should be measured across a range of concentrations (serial dilution) 

and for many repetitions to determine stability in the sizing results. Poor 

repeatability can result from the particle concentration being either too high 

(multiple-scattering events) or too low (low signal to noise). Highly polydisperse 

emulsions can also introduce variability in sizing results, and so a higher number 

of repetitions and averages should be considered with greater polydispersity.

2. The native measurement in DLS is an intensity distribution. To convert to 

number distribution with reasonable accuracy, a refractive index within 0.5% of 

the true value is required. This value is known for many compounds, but there is 

some inherent uncertainty for perfluorocarbons measured near or above their 

boiling point (e.g., DFB droplets measured by DLS as 4 °C). Although intensity-

weighted distributions overemphasize the large sample content, they should be 

considered the most trustworthy and displayed alongside extrapolated 

measurements such as number-weighted or volume-weighted.

3. Many preparations of phase-shift droplets result in polydisperse emulsions, 

containing both very small (<100 nm) and very large droplets (>500 nm). As 

particle sizes approach the microscale, sedimentation may occur over the course 

of several DLS measurements. Comparisons in size for the same sample over 

long periods of time should be done only if the sample is mixed between 

measurements.

Because DLS cannot provide estimations of sample concentration, the most common 

approach is to assume the particle generation technique produces no loss in the volume of 

PFC used. Combining the known PFC volume with the measured average particle diameter 

provides a straightforward method of estimating particle concentration [41], [42], [70]. How 

accurate the “no loss” assumption is will highly depend on the specific particle generation 

technique and operating conditions chosen. A relatively new generation of particle sizing 

instruments based on sensitivity to single nanoparticles may circumvent some of the issues 

described above and provide a new standard of measurement in the future by providing 

direct number-weighted size along with concentration [73], [74].

In general, submicrometer particle sizing should always be coupled with microscale sizing 

(e.g., Coulter counters) and/or brightfield microscopy (40–100X magnification) to ensure 

that large outliers or aggregates beyond the sensitivity of the submicrometer sizer that may 

interfere with results are not present.
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B. Ultrasound Characterization

Droplet vaporization by an ultrasonic pulse is an inherently probabilistic process, and so it 

would seem intuitive to maximize the likelihood of vaporization using long acoustic pulses 

at pressures well above the vaporization threshold (but low enough to minimize unwanted 

bioeffects). The success of this approach likely depends on the intended use of the droplets. 

For applications where droplets are used to achieve a secondary goal (such as drug delivery 

or enhancing ablation), or when bubbles produced by vaporization are expected to 

recondense shortly after the pulse ends (i.e., the droplets are below the equilibrium 

saturation curve at ambient conditions) [75], this is likely correct. However, when the intent 

is to create stable bubbles for continuing ultrasound interaction (e.g., imaging) that survive 

after the pulse ends, repetitive and/or long pulses can change the expected bubble 

distribution adversely. Studies have shown that small bubbles are selectively destroyed with 

continuing vaporization pulses, while large bubbles tend to fuse, gradually shifting the 

bubble distribution toward a larger mean diameter or reducing the total contrast provided 

[43], [45], [57], [76]. For submicrometer droplet emulsions, which produce bubbles of sizes 

that are highly responsive to ultrasound imaging frequencies, it may be the case that short 

acoustic pulses/vaporization sequences are required to minimize unintended microbubble 

destruction and maximize the resulting contrast. Thus, when stable bubble production is 

desired, we recommend initial characterization with the shortest acoustic pulse lengths and 

least number of repetitions possible in order to establish vaporization trends. These trends 

obtained from short acoustic exposures can then be compared with the results obtained from 

longer duration exposures that are likely to contain more of the secondary effects described 

above.

Similar to the sizing considerations in Section IV-A, it is important to assess the impact of 

distribution outliers on the acoustic performance of the droplet emulsion. It has been 

reported by multiple groups that vaporization thresholds are reduced as droplet size 

increases [16], [17], [30]. This is likely due to a number of combined effects, such as 

decreased Laplace pressure, increased superharmonic focusing, and increased probability of 

nucleation in the larger volume. Recent studies have shown that large outlier content can 

greatly skew the measured vaporization threshold and significantly alter in vivo performance 

from that desired [43], [77] (Fig. 5). For the purposes of in vitro therapeutic investigations, 

these outliers may actually dominate the measured effect. Finally, it has been shown that 

some measurements of droplet activation do not linearly scale with droplet concentration 

[78]. Therefore, in concert with the sizing practices described in the previous section, we 

recommend that ultrasound characterization of submicrometer phase-shift droplets should be 

performed across a range of concentrations that include high dilutions as well as compared 

against samples filtered to remove microscale content.

V. Conclusion

As highly dynamic agents capable of being activated by externally applied ultrasound, 

phase-shift droplets provide unique opportunities in the imaging and treatment of disease. 

We have surveyed in this paper the most commonly reported methods of producing 

nanoscale phase-shift droplets and have provided example protocols toward the goal of 
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establishing best practices in the research community. Each method described here has 

inherent advantages and disadvantages, and the best approach is likely to depend on the 

application being pursued.
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Fig. 1. 
For lipid encapsulations, droplet-to-microbubble vaporization requires rapid spreading of 

lipid at the gas/water interface to accommodate the area expansion. The elastic cohesion 

energy would resist both monolayer expansion and leaflet bending from the unfolding of 

surface-attached bilayers, and thus the cohesion energy may add to the overall energy barrier 

for vaporization. Reproduced with permission from [29]. Copyright 2015 American 

Chemical Society.
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Fig. 2. 
Example of polydisperse size distribution of tip-sonicated PFC droplets. Here PFH droplets 

were templated with silica in order to image them effectively using scanning electron 

microscopy.
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Fig. 3. 
Microbubble condensation to form submicrometer droplets from volatile compounds (from 

[23]). (a) Phospholipid-encapsulated DFB microbubbles initially appear as an opaque 

“milky” emulsion. (b) Produce a distribution with a mean diameter of 1.0 ± 0.9 μm (N = 3, 

Accusizer 780, five-point smoothing applied). (c) After condensation, the emulsion 

appearance turns translucent. (d) Distribution shifts into the nanoscale with a mean diameter 

of 164 ± 63 μm (N = 3, Malvern NS-500). Dashed lines represent one standard deviation.
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Fig. 4. 
Example of monodisperse DDFP droplets before and after conversion into bubbles. (a) 

Microscope image of droplets (mean diameter = 6.6 μm and CV = 2.7%) on the glass slide 

after complete condensation and cosolvent dissolution from the precursor cosolvent-infused 

bubbles. (b) Microscope images of droplets and bubbles (mean diameter = 52.4 μm and CV 

= 3.5%) embedded in PAA gel after exposure to high-pressure ultrasound, showing the 

monodispersity of both the converted bubbles and the unconverted droplets (shown in the 

white inset box). The image was taken 4 min after high-pressure ultrasound exposure. 

Reproduced from [68] with permission from The Royal Society of Chemistry.
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Fig. 5. 
Visualization of DFB droplet vaporization within the mouse kidney at 30-MHz nominal 

center frequency with a standard B-mode imaging sequence. Here, two droplet emulsions 

prepared by microbubble condensation are compared. Each produces a DLS measurement 

with a peak in the 200–300-nm range, but the “size-selected emulsion” has been processed 

to remove large outliers not represented by DLS [43]. When exposed to 100% power 5 min 

after injection, bubble formation was observed in the proximal kidney cortex. Native 

emulsions resulted in a high degree of stationary contrast in the cortex with significant 

shadowing deep in the kidney—indicative of occlusion by large bubbles produced from 

outlier droplets, whereas size-selected emulsions produced primarily free-flowing bubbles of 

lower echogenicity that appeared as speckle variance from frame to frame. Passing the B-

mode cine loops through a standard deviation filter, removing frames containing breathing 

motion, and summing the remaining frames illustrates the significant qualitative differences 

between the two emulsions, with size-selected droplets producing significantly greater 

speckle variance along the kidney cortex and through the associated interlobar veins. Note: 

hand-drawn ROI added to preinjection B-mode images in order to delineate kidney 

boundaries from surrounding tissue. Reproduced from [43] with permission from Elsevier.
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TABLE I

Perfluorocarbon Properties

Chemical Formula Name Molecular Weight (g/mol) Boiling Point (°C)
Approximate Limit of 

Superheat (~90% Critical 
Temperature) (°C)

C6F14 Perfluorohexane (PFH) 338 59 131

C5F12 Dodecafluoropentane (DDFP) 288 29 107

C4F10 Decafluorobutane (DFB) 238 −2 75

C3F8 Octafluoropropane (OFP) 188 −37 37

Values reproduced from [29], [79].
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