1,935 research outputs found

    Considerations of high altitude emissions

    Get PDF
    The status of the Federal Aviation Administration's High Altitude Pollution Program is described which was instituted to develop the detailed quantitative information needed to judge whether or not regulatory action to limit such exhaust emissions would be necessary. The complexities of this question and the nature and magnitude of uncertainties still present in our scientific understanding of the potential interactions between aircraft exhaust emissions and stratospheric ozone and climate are reviewed. The direction and scope of future Federal and international activities are described

    Where are all the gravastars? Limits upon the gravastar model from accreting black holes

    Get PDF
    The gravastar model, which postulates a strongly correlated thin shell of anisotropic matter surrounding a region of anti-de Sitter space, has been proposed as an alternative to black holes. We discuss constraints that present-day observations of well-known black hole candidates place on this model. We focus upon two black hole candidates known to have extraordinarily low luminosities: the supermassive black hole in the Galactic Center, Sagittarius A*, and the stellar-mass black hole, XTE J1118+480. We find that the length scale for modifications of the type discussed in Chapline et al. (2003) must be sub-Planckian.Comment: 11 pages, 4 figure

    A systematic literature review of open source software quality assessment models

    Get PDF
    Background: Many open source software (OSS) quality assessment models are proposed and available in the litera- ture. However, there is little or no adoption of these models in practice. In order to guide the formulation of newer models so they can be acceptable by practitioners, there is need for clear discrimination of the existing models based on their speci c properties. Based on this, the aim of this study is to perform a systematic literature review to inves- tigate the properties of the existing OSS quality assessment models by classifying them with respect to their quality characteristics, the methodology they use for assessment, and their domain of application so as to guide the formula- tion and development of newer models. Searches in IEEE Xplore, ACM, Science Direct, Springer and Google Search is performed so as to retrieve all relevant primary studies in this regard. Journal and conference papers between the year 2003 and 2015 were considered since the rst known OSS quality model emerged in 2003. Results: A total of 19 OSS quality assessment model papers were selected. To select these models we have devel- oped assessment criteria to evaluate the quality of the existing studies. Quality assessment models are classi ed into ve categories based on the quality characteristics they possess namely: single-attribute, rounded category, community-only attribute, non-community attribute as well as the non-quality in use models. Our study re ects that software selection based on hierarchical structures is found to be the most popular selection method in the existing OSS quality assessment models. Furthermore, we found that majority (47%) of the existing models do not specify any domain of application. Conclusions: In conclusion, our study will be a valuable contribution to the community and helps the quality assess- ment model developers in formulating newer models and also to the practitioners (software evaluators) in selecting suitable OSS in the midst of alternatives

    Effect of a Fundamental Motor Skills Intervention on Fundamental Motor Skill and Physical Activity in a Preschool Setting: A Cluster Randomized Controlled Trial

    Full text link
    Purpose: To determine the effect of a 12-week fundamental motor skill (FMS) program on FMS and physical activity (PA) on preschool-aged children. Method: A cluster randomized controlled trial. The intervention (PhysicaL ActivitY and Fundamental Motor Skills in Pre-schoolers [PLAYFun] Program) was a 12-week games-based program, delivered directly to the children in childcare centers by exercise physiologists. Children in the control arm received the usual preschool curriculum. Outcomes included FMS competence (Test of Gross Motor Development-2) and PA (accelerometer) assessed at baseline, 12 weeks, and 24 weeks (12-wk postintervention). Results: Fifty children (mean age = 4.0 [0.6] y; 54% male) were recruited from 4 childcare centers. Two centers were randomized to PLAYFun and 2 centers were randomized to the waitlist control group. Children attended on average 2.0 (1.0) 40-minute sessions per week. The PLAYFun participants demonstrated significant increases in object control (P < .001) and total FMS (P = .010) competence at week 12, compared with controls in a group Ă— time interaction. Girls, but not boys, in PLAYFun significantly increased moderate to vigorous PA after the intervention (P = .004). These increases were not maintained 12-week postcompletion of PLAYFun. Conclusions: The PLAYFun Program is effective at improving FMS competence in boys and girls and increasing PA in girls. However, improvements are not maintained when opportunities to practice are not sustained

    Dense stellar matter with trapped neutrinos under strong magnetic fields

    Full text link
    We investigate the effects of strong magnetic fields on the equation of state of dense stellar neutrino-free and neutrino-trapped matter. Relativistic nuclear models both with constant couplings (NLW) and with density dependent parameters (DDRH) and including hyperons are considered . It is shown that at low densities neutrinos are suppressed in the presence of the magnetic field. The magnetic field reduces the strangeness fraction of neutrino-free matter and increases the strangeness fraction of neutrino-trapped matter. The mass-radius relation of stars described by these equations of state are determined. The magnetic field makes the overall equation of state stiffer and the stronger the field the larger the mass of maximum mass star and the smaller the baryon density at the center of the star. As a consequence in the presence of strong magnetic fields the possibility that a protoneutron star evolves to a blackhole is smaller.Comment: 18 pages, 13 figures, 5 tables, submitted to J. Phys.

    VLBI observations of the Crab nebula pulsar

    Get PDF
    Observations were made at meter wave-lengths using very long base-line interferometry techniques. At 196.5 MHz no resolution of the pulsar are observed; all the pulse shapes observed with the interferometers are similar to single dish profiles, and all the power pulsates. At 111.5 MHz besides the pulsing power there is always a steady component, presumably due to interstellar scattering. The pulsar is slightly resolved at 111.5 MHz with an apparent angular diameter of 0.07 sec ? 0.01 sec. A 50 percent linear polarization of the time-averaged power is noted at 196.5 MHz; at 111.5 MHz, 20 percent of the total time-averaged power is polarized, 35 percent of the pulsing power is polarized, and the steady component is unpolarized

    The Intrinsic Size of Sagittarius A* from 0.35 cm to 6 cm

    Get PDF
    We present new high-resolution observations of Sagittarius A* at wavelengths of 17.4 to 23.8 cm with the Very Large Array in A configuration with the Pie Town Very Long Baseline Array antenna. We use the measured sizes to calibrate the interstellar scattering law and find that the major axis size of the scattering law is smaller by ~6% than previous estimates. Using the new scattering law, we are able to determine the intrinsic size of Sgr A* at wavelengths from 0.35 cm to 6 cm using existing results from the VLBA. The new law increases the intrinsic size at 0.7 cm by ~20% and <5% at 0.35 cm. The intrinsic size is 13^{+7}_{-3} Schwarzschild radii at 0.35 cm and is proportional to lambda^gamma, where gamma is in the range 1.3 to 1.7.Comment: ApJL, in pres

    Can accretion disk properties distinguish gravastars from black holes?

    Get PDF
    Gravastars, hypothetic astrophysical objects, consisting of a dark energy condensate surrounded by a strongly correlated thin shell of anisotropic matter, have been proposed as an alternative to the standard black hole picture of general relativity. Observationally distinguishing between astrophysical black holes and gravastars is a major challenge for this latter theoretical model. In the context of stationary and axially symmetrical geometries, a possibility of distinguishing gravastars from black holes is through the comparative study of thin accretion disks around rotating gravastars and Kerr-type black holes, respectively. In the present paper, we consider accretion disks around slowly rotating gravastars, with all the metric tensor components estimated up to the second order in the angular velocity. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution and equilibrium radiation spectrum) are different for these two classes of compact objects, consequently giving clear observational signatures. In addition to this, it is also shown that the conversion efficiency of the accreting mass into radiation is always smaller than the conversion efficiency for black holes, i.e., gravastars provide a less efficient mechanism for converting mass to radiation than black holes. Thus, these observational signatures provide the possibility of clearly distinguishing rotating gravastars from Kerr-type black holes.Comment: 12 pages, 12 figures. V2: 14 pages, significant discussion and references added, to appear in Class.Quant.Gra

    Cuspons, peakons and regular gap solitons between three dispersion curves

    Full text link
    A general wave model with the cubic nonlinearity is introduced to describe a situation when the linear dispersion relation has three branches, which would intersect in the absence of linear couplings between the three waves. Actually, the system contains two waves with a strong linear coupling between them, to which a third wave is then coupled. This model has two gaps in its linear spectrum. Realizations of this model can be made in terms of temporal or spatial evolution of optical fields in, respectively, a planar waveguide or a bulk-layered medium resembling a photonic-crystal fiber. Another physical system described by the same model is a set of three internal wave modes in a density-stratified fluid. A nonlinear analysis is performed for solitons which have zero velocity in the reference frame in which the group velocity of the third wave vanishes. Disregarding the self-phase modulation (SPM) term in the equation for the third wave, we find two coexisting families of solitons: regular ones, which may be regarded as a smooth deformation of the usual gap solitons in a two-wave system, and cuspons with a singularity in the first derivative at their center. Even in the limit when the linear coupling of the third wave to the first two vanishes, the soliton family remains drastically different from that in the linearly uncoupled system; in this limit, regular solitons whose amplitude exceeds a certain critical value are replaced by peakons. While the regular solitons, cuspons, and peakons are found in an exact analytical form, their stability is tested numerically, which shows that they all may be stable. If the SPM terms are retained, we find that there again coexist two different families of generic stable soliton solutions, namely, regular ones and peakons.Comment: a latex file with the text and 10 pdf files with figures. Physical Review E, in pres
    • …
    corecore