3,106 research outputs found
A triple-GEM telescope for the TOTEM experiment
The TOTEM experiment at LHC has chosen the triple Gas Electron Multiplier
(GEM) technology for its T2 telescope which will provide charged track
reconstruction in the rapidity range 5.3<|eta|<6.5 and a fully inclusive
trigger for diffractive events. GEMs are gas-filled detectors that have the
advantageous decoupling of the charge amplification structure from the charge
collection and readout structure. Furthermore, they combine good spatial
resolution with very high rate capability and a good resistance to radiation.
Results from a detailed T2 GEM simulation and from laboratory tests on a final
design detector performed at CERN are presented.Comment: To appear in the proceedings of 10th Topical Seminar on Innovative
Particle and Radiation Detectors (IPRD06), Siena, Italy, October 1-5 200
Timing performance of a double layer diamond detector
In order to improve the time precision of detectors based on diamonds sensors we have built a detector with two scCVD layers connected in parallel to the same amplifier. This work describes the design and the first measurements of such a prototype performed on a particle beam at CERN. With this different configuration we have obtained an improvement larger than a factor of 1.6-1.7 for the timing precision of the measurement when compared to a one layer scCVD diamond detector.Peer reviewe
Test of Ultra Fast Silicon Detectors for the TOTEM upgrade project
This paper describes the performance of a prototype timing detector, based on 50 mu m thick Ultra Fast Silicon Detector, as measured in a beam test using a 180 GeV/c momentum pion beam. The dependence of the time precision on the pixel capacitance and bias voltage is investigated in this paper. A timing precision from 30 ps to 100 ps (RMS), depending on the pixel capacitance, has been measured at a bias voltage of 180 V.Peer reviewe
A New Scintillator Tile/Fiber Preshower Detector for the CDF Central Calorimeter
A detector designed to measure early particle showers has been installed in
front of the central CDF calorimeter at the Tevatron. This new preshower
detector is based on scintillator tiles coupled to wavelength-shifting fibers
read out by multi-anode photomultipliers and has a total of 3,072 readout
channels. The replacement of the old gas detector was required due to an
expected increase in instantaneous luminosity of the Tevatron collider in the
next few years. Calorimeter coverage, jet energy resolution, and electron and
photon identification are among the expected improvements. The final detector
design, together with the R&D studies that led to the choice of scintillator
and fiber, mechanical assembly, and quality control are presented. The detector
was installed in the fall 2004 Tevatron shutdown and started collecting
colliding beam data by the end of the same year. First measurements indicate a
light yield of 12 photoelectrons/MIP, a more than two-fold increase over the
design goals.Comment: 5 pages, 10 figures (changes are minor; this is the final version
published in IEEE-Trans.Nucl.Sci.
A novel background reduction strategy for high level triggers and processing in gamma-ray Cherenkov detectors
Gamma ray astronomy is now at the leading edge for studies related both to
fundamental physics and astrophysics. The sensitivity of gamma detectors is
limited by the huge amount of background, constituted by hadronic cosmic rays
(typically two to three orders of magnitude more than the signal) and by the
accidental background in the detectors. By using the information on the
temporal evolution of the Cherenkov light, the background can be reduced. We
will present here the results obtained within the MAGIC experiment using a new
technique for the reduction of the background. Particle showers produced by
gamma rays show a different temporal distribution with respect to showers
produced by hadrons; the background due to accidental counts shows no
dependence on time. Such novel strategy can increase the sensitivity of present
instruments.Comment: 4 pages, 3 figures, Proc. of the 9th Int. Syposium "Frontiers of
Fundamental and Computational Physics" (FFP9), (AIP, Melville, New York,
2008, in press
The CDF Calorimetry Upgrade for Run IIb
The physics program at the Fermilab Tevatron Collider will continue to
explore the high energy frontier of particle physics until the commissioning of
the LHC at CERN. The luminosity increase provided by the Main Injector will
require upgrades beyond those implemented for the first stage (Run IIa) of the
Tevatron's Run II physics program. The upgrade of the CDF calorimetry includes:
1) the replacement of the slow gas detectors on the front face of the Central
Calorimeter with a faster scintillator version which has a better segmentation,
and 2) the addition of timing information to both the Central and EndPlug
Electromagnetic Calorimeters to filter out cosmic ray and beam related
backgrounds.Comment: Presented at `Frontier Detectors for Frontier Physics; 9th Pisa
Meeting on Advanced Detectors', Biodola, Italy, 25-31 May 2003. 2 page
Construction and Performance of Large-Area Triple-GEM Prototypes for Future Upgrades of the CMS Forward Muon System
At present, part of the forward RPC muon system of the CMS detector at the
CERN LHC remains uninstrumented in the high-\eta region. An international
collaboration is investigating the possibility of covering the 1.6 < |\eta| <
2.4 region of the muon endcaps with large-area triple-GEM detectors. Given
their good spatial resolution, high rate capability, and radiation hardness,
these micro-pattern gas detectors are an appealing option for simultaneously
enhancing muon tracking and triggering capabilities in a future upgrade of the
CMS detector. A general overview of this feasibility study will be presented.
The design and construction of small (10\times10 cm2) and full-size trapezoidal
(1\times0.5 m2) triple-GEM prototypes will be described. During detector
assembly, different techniques for stretching the GEM foils were tested.
Results from measurements with x-rays and from test beam campaigns at the CERN
SPS will be shown for the small and large prototypes. Preliminary simulation
studies on the expected muon reconstruction and trigger performances of this
proposed upgraded muon system will be reported.Comment: 7 pages, 25 figures, submitted for publication in conference record
of the 2011 IEEE Nuclear Science Symposium, Valencia, Spai
An overview of the design, construction and performance of large area triple-GEM prototypes for future upgrades of the CMS forward muon system
GEM detectors are used in high energy physics experiments given their good spatial resolution, high rate capability and radiation hardness. An international collaboration is investigating the possibility of covering the 1.6 < vertical bar eta vertical bar < 2.4 region of the CMS muon endcaps with large-area triple-GEM detectors. The CMS high-eta area is actually not fully instrumented, only Cathode Strip Chamber (CSC) are installed. The vacant area presents an opportunity for a detector technology able to to cope with the harsh radiation environment; these micropattern gas detectors are an appealing option to simultaneously enhance muon tracking and triggering capabilities in a future upgrade of the CMS detector. A general overview of this feasibility study is presented. Design and construction of small (10cm x 10cm) and full-size trapezoidal (1m x 0.5m) triple-GEM prototypes is described. Results from measurements with x-rays and from test beam campaigns at the CERN SPS is shown for the small and large prototypes. Preliminary simulation studies on the expected muon reconstruction and trigger performances of this proposed upgraded muon system are reported
First bounds on the very high energy gamma-ray emission from Arp 220
Using the Major Atmospheric Gamma Imaging Cherenkov Telescope (MAGIC), we
have observed the nearest ultra-luminous infrared galaxy Arp 220 for about 15
hours. No significant signal was detected within the dedicated amount of
observation time. The first upper limits to the very high energy -ray
flux of Arp 220 are herein reported and compared with theoretical expectations.Comment: Accepted for publication in Ap
LHC Optics Measurement with Proton Tracks Detected by the Roman Pots of the TOTEM Experiment
Precise knowledge of the beam optics at the LHC is crucial to fulfil the
physics goals of the TOTEM experiment, where the kinematics of the scattered
protons is reconstructed with the near-beam telescopes -- so-called Roman Pots
(RP). Before being detected, the protons' trajectories are influenced by the
magnetic fields of the accelerator lattice. Thus precise understanding of the
proton transport is of key importance for the experiment. A novel method of
optics evaluation is proposed which exploits kinematical distributions of
elastically scattered protons observed in the RPs. Theoretical predictions, as
well as Monte Carlo studies, show that the residual uncertainty of this optics
estimation method is smaller than 0.25 percent.Comment: 20 pages, 11 figures, 5 figures, to be submitted to New J. Phy
- …