391 research outputs found

    Testing the Kerr nature of intermediate-mass and supermassive black hole binaries using spin-induced multipole moment measurements

    Full text link
    The gravitational wave measurements of spin-induced multipole moment coefficients of a binary black hole system can be used to distinguish black holes from other compact objects [N. V. Krishnendu et al., PRL 119, 091101 (2017)]. Here, we apply the idea proposed in [N. V. Krishnendu et al., PRL 119, 091101 (2017)] to binary systems composed of intermediate-mass and supermassive black holes and derive the expected bounds on their Kerr nature using future space-based gravitational wave detectors. Using astrophysical models of binary black hole population, we study the measurability of the spin-induced quadrupole and octupole moment coefficients using LISA and DECIGO. The errors on spin-induced quadrupole moment parameter of the binary system are found to be { 0.1\leq 0.1 for almost 3%3\% of the total supermassive binary black hole population which is detectable by LISA whereas it is 46%\sim 46\% for the intermediate-mass black hole binaries observable by DECIGO at its design sensitivity.} We find that { errors on} {\it both} the quadrupole and octupole moment parameters can be estimated to { be} 1\leq 1 for 2%\sim 2\% and 50%\sim 50\% {of the population} respectively for LISA and DECIGO detectors. { Our findings suggest that a subpopulation of binary black hole events, with the signal to noise ratio thresholds greater than 200 and 100 respectively for LISA and DECIGO detectors, would permit tests of black hole nature to 10\% precision.}Comment: 7 pages, 6 figure

    Constraining the nature of dark compact objects with spin-induced octupole moment measurement

    Full text link
    Various theoretical models predict the existence of exotic compact objects that can mimic the properties of black holes (BHs). Gravitational waves (GWs) from the mergers of compact objects have the potential to distinguish between exotic compact objects and BHs. The measurement of spin-induced multipole moments of compact objects in binaries provides a unique way to test the nature of compact objects. The observations of GWs by LIGO and Virgo have already put constraints on the spin-induced quadrupole moment, the leading order spin-induced moment. In this work, we develop a Bayesian framework to measure the spin-induced octupole moment, the next-to-leading order spin-induced moment. The precise measurement of the spin-induced octupole moment will allow us to test its consistency with that of Kerr BHs in general relativity and constrain the allowed parameter space for non-BH compact objects. For various simulated compact object binaries, we explore the ability of the LIGO and Virgo detector network to constrain spin-induced octupole moment of compact objects. We find that LIGO and Virgo at design sensitivity can constrain the symmetric combination of component spin-induced octupole moments of binary for dimensionless spin magnitudes 0.8\sim 0.8. Further, we study the possibility of simultaneously measuring the spin-induced quadrupole and octupole moments. Finally, we perform this test on selected GW events reported in the third GW catalog. These are the first constraints on spin-induced octupole moment using full Bayesian analysis.Comment: 13 pages, 8 figure

    Unveiling Microlensing Biases in Testing General Relativity with Gravitational Waves

    Full text link
    Gravitational waves (GW) from chirping binary black holes (BBHs) provide unique opportunities to test general relativity (GR) in the strong-field regime. However, testing GR can be challenging when incomplete physical modeling of the expected signal gives rise to systematic biases. In this study, we investigate the potential influence of wave effects in gravitational lensing (which we refer to as microlensing) on tests of GR using GWs for the first time. We utilize an isolated point-lens model for microlensing with the lens mass ranging from 10105 10-10^5~M_\odot and base our conclusions on an astrophysically motivated population of BBHs in the LIGO-Virgo detector network. Our analysis centers on two theory-agnostic tests of gravity: the inspiral-merger-ringdown consistency test (IMRCT) and the parameterized tests. Our findings reveal two key insights: First, microlensing can significantly bias GR tests, with a confidence level exceeding 5σ5\sigma. Notably, substantial deviations from GR (σ>3)(\sigma > 3) tend to align with a strong preference for microlensing over an unlensed signal, underscoring the need for microlensing analysis before claiming any erroneous GR deviations. Nonetheless, we do encounter scenarios where deviations from GR remain significant (1<σ<31 < \sigma < 3), yet the Bayes factor lacks the strength to confidently assert microlensing. Second, deviations from GR correlate with pronounced interference effects, which appear when the GW frequency (fGWf_\mathrm{GW}) aligns with the inverse time delay between microlens-induced images (tdt_\mathrm{d}). These false deviations peak in the wave-dominated region and fade where fGWtdf_\mathrm{GW}\cdot t_\mathrm{d} significantly deviates from unity. Our findings apply broadly to any microlensing scenario, extending beyond specific models and parameter spaces, as we relate the observed biases to the fundamental characteristics of lensing.Comment: 21 pages, 12 figure

    Antioxidant Properties of Bitter Gourd (Momordica Charantia L.)

    Full text link
    Bitter gourd is regarded as an antioxidant rich vegetable with beneficial properties for the circulatory, respiratory, digestive and nervous systems according to the Indian indigenous system of medicine. Several methods have been used to determine antioxidant activity of plants. The present study, therefore, involved four various established methods to evaluate anti oxidative activity of bitter gourd fruit, namely, total antioxidant capacity, DPPH radical scavenging activity, hydroxyl radical scavenging activity and super oxide anion radical scavenging activity by using different types of solvents like petroleum ether, acetone, ethanol and methanol. The present study revealed that light green big sample had the highest DPPH activity with an IC50 value of 50.88 µg/ ml in methanol solvent. In the case of bitter gourd dried samples, highest DPPH activity with an IC50 value of 50.10 µg/ ml was reported in light green big type. The hydroxyl radical scavenging activity of light green big was found to be highest both in the case of fresh and dried bitter gourd samples with an IC50 values of 50.95 µg/ml and 50.10 µg/ml respectively. Light green small sample showed higher superoxide anion radical scavenging activity with an IC50 value of 50.36 µg/ ml in fresh samples and 49.76 µg/ ml in dried samples, in solvents like petroleum ether and acetone respectively. Antioxidant activity ranged with an IC50 value of 50.09 µg/ml to 61.90 µg/ml in fresh bitter gourd samples and maximum antioxidant capacity was observed in light green big (50.09 µg/ ml) whereas dried samples, the highest antioxidant activity was observed in light green dried (50.07 µg/ ml) in acetone solvent

    Distinguishing binary black hole precessional morphologies with gravitational wave observations

    Full text link
    The precessional motion of binary black holes can be classified into one of three morphologies, based on the evolution of the angle between the components of the spins in the orbital plane: Circulating, librating around 0, and librating around π\pi. These different morphologies can be related to the binary's formation channel and are imprinted in the binary's gravitational wave signal. In this paper, we develop a Bayesian model selection method to determine the preferred spin morphology of a detected binary black hole. The method involves a fast calculation of the morphology which allows us to restrict to a specific morphology in the Bayesian stochastic sampling. We investigate the prospects for distinguishing between the different morphologies using gravitational waves in the Advanced LIGO/Advanced Virgo network with their plus-era sensitivities. For this, we consider fiducial high- and low-mass binaries having different spin magnitudes and signal-to-noise ratios (SNRs). We find that in the cases with high spin and high SNR, the true morphology is strongly favored with log10\log_{10} Bayes factors 4\gtrsim 4 compared to both alternative morphologies when the binary's parameters are not close to the boundary between morphologies. However, when the binary parameters are close to the boundary between morphologies, only one alternative morphology is strongly disfavored. In the low-spin, high-SNR cases, the true morphology is still favored with a log10\log_{10} Bayes factor 2\sim 2 compared to one alternative morphology. We also consider the gravitational wave signal from GW200129_065458 that has some evidence for precession (modulo data quality issues) and find that there is no preference for a specific morphology. Our method for restricting the prior to a given morphology is publicly available through an easy-to-use Python package called bbh_spin_morphology_prior. (Abridged)Comment: 14 pages, 5 figures, version accepted by PR

    Distinguishing binary black hole precessional morphologies with gravitational wave observations

    Get PDF
    The precessional motion of binary black holes can be classified into one of three morphologies, based on the evolution of the angle between the components of the spins in the orbital plane: Circulating, librating around 0, and librating around π. These different morphologies can be related to the binary’s formation channel and are imprinted in the binary’s gravitational wave signal. In this paper, we develop a Bayesian model selection method to determine the preferred spin morphology of a detected binary black hole. The method involves a fast calculation of the morphology which allows us to restrict to a specific morphology in the Bayesian stochastic sampling. We investigate the prospects for distinguishing between the different morphologies using gravitational waves in the Advanced LIGO/Advanced Virgo network with their plus-era sensitivities. For this, we consider fiducial high- and low-mass binaries having different spin magnitudes and signal-to-noise ratios (SNRs). We find that in the cases with high spin and high SNR, the true morphology is strongly favored with log10 Bayes factors ≳ 4 compared to both alternative morphologies when the binary’s parameters are not close to the boundary between morphologies. However, when the binary parameters are close to the boundary between morphologies, only one alternative morphology is strongly disfavored. In the low-spin, high-SNR cases, the true morphology is still favored with a log10 Bayes factor ∼ 2 compared to one alternative morphology, while in the low-SNR cases the log10 Bayes factors are at most ∼1 for many binaries. We also consider the gravitational wave signal from GW200129_065458 that has some evidence for precession (modulo data quality issues) and find that there is no preference for a specific morphology. Our method for restricting the prior to a given morphology is publicly available through an easy-to-use python package called bbh_spin_morphology_prior

    Quantum chaos in the spectrum of operators used in Shor's algorithm

    Full text link
    We provide compelling evidence for the presence of quantum chaos in the unitary part of Shor's factoring algorithm. In particular we analyze the spectrum of this part after proper desymmetrization and show that the fluctuations of the eigenangles as well as the distribution of the eigenvector components follow the CUE ensemble of random matrices, of relevance to quantized chaotic systems that violate time-reversal symmetry. However, as the algorithm tracks the evolution of a single state, it is possible to employ other operators, in particular it is possible that the generic quantum chaos found above becomes of a nongeneric kind such as is found in the quantum cat maps, and in toy models of the quantum bakers map.Comment: Title and paper modified to include interesting additional possibilities. Principal results unaffected. Accepted for publication in Phys. Rev. E as Rapid Com

    Population inference of spin-induced quadrupole moments as a probe for non-black hole compact binaries

    Get PDF
    Gravitational-wave (GW) measurements of physical effects such as spin-induced quadrupole moments can distinguish binaries consisting of black holes from non-black hole binaries. While these effects may be poorly constrained for single-event inferences with the second-generation detectors, combining information from multiple detections can help uncover features of non-black hole binaries. The spin-induced quadrupole moment has specific predictions for different types of compact objects, and a generalized formalism must consider a population where different types of compact objects co-exist. In this study, we introduce a hierarchical mixture-likelihood formalism to estimate the {\it fraction of non-binary black holes in the population}. We demonstrate the applicability of this method using simulated GW signals injected into Gaussian noise following the design sensitivities of the Advanced LIGO Advanced Virgo detectors. We compare the performance of this method with a traditionally-followed hierarchical inference approach. Both the methods are equally effective to hint at inhomogeneous populations, however, we find the mixture-likelihood approach to be more natural for mixture populations comprising compact objects of diverse classes. We also discuss the possible systematics in the mixture-likelihood approach, caused by several reasons, including the limited sensitivity of the second-generation detectors, specific features of the astrophysical population distributions, and the limitations posed by the waveform models employed. Finally, we apply this method to the LIGO-Virgo detections published in the second GW transient catalog (GWTC-2) and find them consistent with a binary black hole population within the statistical precision.Comment: 13 pages, 6 figures, 1 tabl
    corecore